Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

The usage of doxorubicin (DOX), an antineoplastic drug that is frequently used for the cure of cancer, is restricted to maximal doses due to its cardiac toxicity. Reactive oxygen species produced by DOX result in lipid peroxidation and organ failure, ultimately resulting in cardiomyopathy. Due to its high polyphenol content, virgin rice bran oil (VRBO) is a diet nutritional supplement with a strong antioxidant. This study aimed to assess the potential defense of VRBO against DOX-induced cardiotoxicity.

Methods

VRBO and DOX injections were administered to thirty male Wistar rats for 42 days after being randomly assigned to five groups.

Results

The study demonstrated the cardioprotective effects of VRBO against doxorubicin (DOX)-induced cardiotoxicity. VRBO (0.71 and 1.42 ml/kg) significantly improved the heart-to-body weight ratio, reduced elevated serum CK-MB and LDH levels by 18.4% and 52.7%, respectively, and increased HDL by 43.1%. ECG parameters also improved, with reductions in QT interval (19%), ST interval (28%), and QRS complex (15%). VRBO enhanced systolic blood pressure (up to 21%) and heart rate (7.1%). Antioxidant markers showed notable recovery, with MDA levels reduced by 66.1%, while GSH, SOD, and catalase levels increased by 129.4%, 158.2%, and 84.8%, respectively.

Conclusion

A cardioprotective benefit was found at middle and higher VRBO dosages. In order to demonstrate the effectiveness of VRBO as a cardioprotective medication, further research on dosage response and bioavailability is required.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X327970250108045235
2025-01-28
2025-10-21
Loading full text...

Full text loading...

References

  1. LiX. LuoW. TangY. WuJ. ZhangJ. ChenS. ZhouL. TaoY. TangY. WangF. HuangY. JoseP.A. GuoL. ZengC. Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-mediated mitochondrial dysfunction.Redox Biol.20247210312910.1016/j.redox.2024.10312938574433
    [Google Scholar]
  2. RawatP.S. JaiswalA. KhuranaA. BhattiJ.S. NavikU. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management.Biomed. Pharmacother.202113911170810.1016/j.biopha.2021.11170834243633
    [Google Scholar]
  3. ChenK.H. SunJ.M. LinL. LiuJ.W. LiuX.Y. ChenG.D. ChenH. ChenZ.Y. The NEDD8 activating enzyme inhibitor MLN4924 mitigates doxorubicin-induced cardiotoxicity in mice.Free Radic. Biol. Med.202421912714010.1016/j.freeradbiomed.2024.04.22138614228
    [Google Scholar]
  4. YehE.T.H. BickfordC.L. Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management.J. Am. Coll. Cardiol.200953242231224710.1016/j.jacc.2009.02.05019520246
    [Google Scholar]
  5. ForceT. KolajaK.L. Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes.Nat. Rev. Drug Discov.201110211112610.1038/nrd325221283106
    [Google Scholar]
  6. WuL. ZhangY. WangG. RenJ. Molecular mechanisms and therapeutic targeting of ferroptosis in doxorubicin-induced cardiotoxicity.JACC Basic Transl. Sci.20249681182639070280
    [Google Scholar]
  7. ChenL. SunX. WangZ. ChenM. HeY. ZhangH. HanD. ZhengL. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway.Toxicol. Appl. Pharmacol.202448211679410.1016/j.taap.2023.11679438142782
    [Google Scholar]
  8. YilmazS. KayaE. YonarH. MendilA.S. Doxorubicin-induced oxidative stress injury: The protective effect of kumiss on cardiotoxicity.J. Hell. Vet. Med. Soc.20227334545455810.12681/jhvms.27822
    [Google Scholar]
  9. HeP. XuS. GuoZ. YuanP. LiuY. ChenY. ZhangT. QueY. HuY. Pharmacodynamics and pharmacokinetics of PLGA-based doxorubicin-loaded implants for tumor therapy.Drug Deliv.202229147848810.1080/10717544.2022.203287835147071
    [Google Scholar]
  10. TufailT. AinH.B.U. ChenJ. VirkM.S. AhmedZ. AshrafJ. ShahidN.U.A. XuB. Contemporary views of the extraction, health benefits, and industrial integration of rice bran oil: A prominent ingredient for holistic human health.Foods2024139130510.3390/foods1309130538731675
    [Google Scholar]
  11. PuniaS. KumarM. SirohaA.K. PurewalS.S. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application.Rice Sci.202128321723210.1016/j.rsci.2021.04.002
    [Google Scholar]
  12. SenaphanK. KukongviriyapanU. SuwannachotP. ThiratanaboonG. SangartitW. ThawornchinsombutS. JongjareonrakA. Protective effects of rice bran hydrolysates on heart rate variability, cardiac oxidative stress, and cardiac remodeling in high fat and high fructose diet-fed rats.Asian Pac. J. Trop. Biomed.202111518319310.4103/2221‑1691.311754
    [Google Scholar]
  13. Jan-onG. SangartitW. PakdeechoteP. KukongviriyapanV. SattayasaiJ. SenaphanK. KukongviriyapanU. Virgin rice bran oil alleviates hypertension through the upregulation of eNOS and reduction of oxidative stress and inflammation in L-NAME–induced hypertensive rats.Nutrition20206911057510.1016/j.nut.2019.11057531585258
    [Google Scholar]
  14. PourrajabB. SohouliM.H. AmirinejadA. FatahiS. GămanM.A. ShidfarF. The impact of rice bran oil consumption on the serum lipid profile in adults: A systematic review and meta-analysis of randomized controlled trials.Crit. Rev. Food Sci. Nutr.202262226005601510.1080/10408398.2021.189506233715544
    [Google Scholar]
  15. GarciaJ.L. VileigasD.F. GregolinC.S. CostaM.R. Francisqueti-FerronF.V. FerronA.J.T. De CamposD.H.S. MoretoF. MinatelI.O. BazanS.G.Z. CorrêaC.R. Rice (Oryza sativa L.) bran preserves cardiac function by modulating pro-inflammatory cytokines and redox state in the myocardium from obese rats.Eur. J. Nutr.202261290191310.1007/s00394‑021‑02691‑034636986
    [Google Scholar]
  16. TianX. WangX. FangM. YuL. MaF. WangX. ZhangL. LiP. Nutrients in rice bran oil and their nutritional functions: A review.Crit. Rev. Food Sci. Nutr.202411810.1080/10408398.2024.235253038856105
    [Google Scholar]
  17. MicallefI. BaronB. Doxorubicin: An overview of the anti-cancer and chemoresistance mechanisms.Annals of Clinical Toxicology2020321031
    [Google Scholar]
  18. ScavarielloE.M. ArellanoD.B. Gamma-oryzanol: An important component in rice brain oil.Arch. Latinoam. Nutr.19984817129754398
    [Google Scholar]
  19. Abdul GhaniN.A. Abdul NasirN.A. LambukL. SadikanM.Z. AgarwalR. RamliN. The effect of palm oil-derived tocotrienol-rich fraction in preserving normal retinal vascular diameter in streptozotocin-induced diabetic rats.Graefes Arch. Clin. Exp. Ophthalmol.202326161587159610.1007/s00417‑022‑05965‑336622408
    [Google Scholar]
  20. SundayL. TranM.M. KrauseD.N. DucklesS.P. Estrogen and progestagens differentially modulate vascular proinflammatory factors.Am. J. Physiol. Endocrinol. Metab.20062912E261E26710.1152/ajpendo.00550.200516492687
    [Google Scholar]
  21. RoutarayM. NayakP. PandaS. DashA. MahapatraS. Evaluation of anti-diabetic effects of ethanolic extract of albizia lebbeck in rats.Research Journal of Pharmacy and Life Sciences2023425668
    [Google Scholar]
  22. FamurewaA.C. EjezieF.E. Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats.Avicenna J. Phytomed.201881738429387575
    [Google Scholar]
  23. CvjetkovicA. LötvallJ. LässerC. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles.J. Extracell. Vesicles2014312311110.3402/jev.v3.2311124678386
    [Google Scholar]
  24. WarpeV.S. MaliV.R. ArulmozhiS. BodhankarS.L. MahadikK.R. Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats.J. Acute Med.2015511810.1016/j.jacme.2015.02.003
    [Google Scholar]
  25. GhuleA.E. BodhankarS.L. Cardio protective effect of coenzyme Q10 on cardiac marker enzymes and electrocardiographic abnormalities in digoxin induced cardio toxicity in wistar rats.Pharmacologyonline20092894904
    [Google Scholar]
  26. TelescaM. DonniacuoM. BellocchioG. RiemmaM.A. MeleE. Dell’AversanaC. SguegliaG. CianfloneE. CappettaD. TorellaD. AltucciL. CastaldoG. RossiF. BerrinoL. UrbanekK. De AngelisA. Initial phase of anthracycline cardiotoxicity involves cardiac fibroblasts activation and metabolic switch.Cancers (Basel)2023161536610.3390/cancers1601005338201480
    [Google Scholar]
  27. BodhankarS. KushawahaS.K. ThakurdesaiP. MohanV. Effect of cyclodextrin garcinol complex on isoproterenol-induced cardiotoxicity and cardiac hypertrophy in rats.Diabesity201622121810.15562/diabesity.2016.28
    [Google Scholar]
  28. HamzaA.A. KhasawnehM.A. ElwyH.M. HassaninS.O. ElhabalS.F. FawziN.M. Salvadora persica attenuates DMBA-induced mammary cancer through downregulation oxidative stress, estrogen receptor expression and proliferation and augmenting apoptosis.Biomed. Pharmacother.202214711266610.1016/j.biopha.2022.11266635124384
    [Google Scholar]
  29. NaderiY. KhosravianiS. NasiriS. HajiaghaeiF. AaliE. JamialahmadiT. BanachM. SahebkarA. Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity.Biomed. Pharmacother.202315811405510.1016/j.biopha.2022.11405536495663
    [Google Scholar]
  30. WanderD.P.A. van der ZandenS.Y. van der MarelG.A. OverkleeftH.S. NeefjesJ. CodéeJ.D.C. Doxorubicin and aclarubicin: Shuffling anthracycline glycans for improved anticancer agents.J. Med. Chem.20206321128141282910.1021/acs.jmedchem.0c0119133064004
    [Google Scholar]
  31. FerreiraL.L. OliveiraP.J. Cunha-OliveiraT. Epigenetics in doxorubicin cardiotoxicity.Pharmacoepigenetics201910837846
    [Google Scholar]
  32. PonzoniM. ColesJ.G. MaynesJ.T. Rodent models of dilated cardiomyopathy and heart failure for translational investigations and therapeutic discovery.Int. J. Mol. Sci.2023244316210.3390/ijms2404316236834573
    [Google Scholar]
  33. Lončar-TurukaloT. VasićM. TasićT. MijatovićG. GlumacS. BajićD. Japunžić-ŽigonN. Heart rate dynamics in doxorubicin-induced cardiomyopathy.Physiol. Meas.201536472773910.1088/0967‑3334/36/4/72725798626
    [Google Scholar]
  34. CostaV.M. CarvalhoF. DuarteJ.A. BastosM.L. RemiãoF. The heart as a target for xenobiotic toxicity: The cardiac susceptibility to oxidative stress.Chem. Res. Toxicol.20132691285131110.1021/tx400130v23902227
    [Google Scholar]
  35. KanwalU. Irfan BukhariN. OvaisM. AbassN. HussainK. RazaA. Advances in nano-delivery systems for doxorubicin: An updated insight.J. Drug Target.201826429631010.1080/1061186X.2017.138065528906159
    [Google Scholar]
  36. CarvalhoC. SantosR. CardosoS. CorreiaS. OliveiraP. SantosM. MoreiraP. Doxorubicin: The good, the bad and the ugly effect.Curr. Med. Chem.200916253267328510.2174/09298670978880331219548866
    [Google Scholar]
  37. RoccaC. De FrancescoE.M. PasquaT. GranieriM.C. De BartoloA. Gallo CantafioM.E. MuoioM.G. GentileM. NeriA. AngeloneT. VigliettoG. AmodioN. Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity.Biomedicines202210352010.3390/biomedicines1003052035327322
    [Google Scholar]
  38. QuanJunY. GenJinY. LiLiW. YongLongH. YanH. JieL. JinLuH. JinL. RunG. ChengG. Protective effects of dexrazoxane against doxorubicin-induced cardiotoxicity: A metabolomic study.PLoS One2017121e016956710.1371/journal.pone.016956728072830
    [Google Scholar]
  39. HussenN.H. HasanA.H. MuhammedG.O. YassinA.Y. SalihR.R. EsmailP.A. AlanaziM.M. JamalisJ. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies.Curr. Org. Chem.202327436337710.2174/1385272827666230423144150
    [Google Scholar]
  40. GarbaU. SinganusongR. JiamyangyuenS. ThongsookT. Extraction and utilization of rice bran oil: A review.4th International Conference on Rice Bran OilPharma-Cosmetics, Nutraceuticals and Foods 24-25 August 20174112
    [Google Scholar]
  41. ZubairM. AnwarF. ArshadI. MalikS. ZafarM.N. Rice nutraceuticals and bioactive compounds: extraction, characterization and antioxidant activity: A review.Comb. Chem. High Throughput Screen.202326152625264310.2174/138620732666623051214483437183472
    [Google Scholar]
  42. Koss-MikołajczykI. TodorovicV. SobajicS. MahajnaJ. GerićM. TurJ.A. BartoszekA. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review.Int. J. Mol. Sci.202122181003710.3390/ijms22181003734576204
    [Google Scholar]
  43. MancillaT.R. IskraB. AuneG.J. Doxorubicin-induced cardiomyopathy in children.Compr. Physiol.20199390593110.1002/cphy.c18001731187890
    [Google Scholar]
  44. ZhaoL. ZhangB. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes.Sci. Rep.2017714473510.1038/srep4473528300219
    [Google Scholar]
  45. HesariM. ShackebaeiD. AsadmobiniA. Protective effect of paracetamol in doxorubicin-induced cardiotoxicity in ischemia/reperfused isolated rat heart.Anatol. J. Cardiol.2018192949910.14744/AnatolJCardiol.2017.803829350208
    [Google Scholar]
  46. VasićM. Lončar-TurukaloT. TasićT. MatićM. GlumacS. BajićD. PopovićB. Japundžić-ŽigonN. Cardiovascular variability and β-ARs gene expression at two stages of doxorubicin – Induced cardiomyopathy.Toxicol. Appl. Pharmacol.2019362435110.1016/j.taap.2018.10.01530342983
    [Google Scholar]
  47. Taymaz-NikerelH. KarabekmezM.E. EraslanS. KırdarB. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells.Sci. Rep.2018811367210.1038/s41598‑018‑31939‑930209405
    [Google Scholar]
  48. BardhanJ Evaluation of cardioprotective effect of tocotrienol rich fraction from rice bran oil.Int. J. Pharm. Sci. Rev. Res.2015301143149
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X327970250108045235
Loading
/content/journals/ccr/10.2174/011573403X327970250108045235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test