Combinatorial Chemistry & High Throughput Screening - Volume 25, Issue 1, 2022
Volume 25, Issue 1, 2022
-
-
DBP-PSSM: Combination of Evolutionary Profiles with the XGBoost Algorithm to Improve the Identification of DNA-binding Proteins
Authors: Yanping Zhang, Pengcheng Chen, Ya Gao, Jianwei Ni and Xiaosheng WangBackground and Objective: DNA-binding proteins play important roles in a variety of biological processes, such as gene transcription and regulation, DNA replication and repair, DNA recombination and packaging, and the formation of chromatin and ribosomes. Therefore, it is urgent to develop a computational method to improve the recognition efficiency of DNA-binding proteins. Methods: We proposed a novel method, DBP-PSSM, which constructed the features from amino acid composition and evolutionary information of protein sequences. The maximum relevance, minimum redundancy (mRMR) was employed to select the optimal features for establishing the XGBoost classifier, therefore, the novel model of prediction DNA-binding proteins, DBP-PSSM, was established with 5-fold cross-validation on the training dataset. Results: DBP-PSSM achieved an accuracy of 81.18% and MCC of 0.657 in a test dataset, which outperformed the many existing methods. These results demonstrated that our method can effectively predict DNA-binding proteins. Conclusion: The data and source code are provided at https://github.com/784221489/DNA-binding.
-
-
-
Identification of Crucial Genes and Diagnostic Value Analysis in Major Depressive Disorder Using Bioinformatics Analysis
Authors: Yao Gao, Huiliang Zhao, Teng Xu, Junsheng Tian and Xuemei QinAim and Objective: Despite the prevalence and burden of major depressive disorder (MDD), our current understanding of the pathophysiology is still incomplete. Therefore, this paper aims to explore genes and evaluate their diagnostic ability in the pathogenesis of MDD. Methods: Firstly, the expression profiles of mRNA and microRNA were downloaded from the gene expression database and analyzed by the GEO2R online tool to identify differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs). Then, the DAVID tool was used for functional enrichment analysis. Secondly, the comprehensive protein-protein interaction (PPI) network was analyzed using Cytoscape, and the network MCODE was applied to explore hub genes. Thirdly, the receiver operating characteristic (ROC) curve of the core gene was drawn to evaluate clinical diagnostic ability. Finally, mirecords was used to predict the target genes of DEMs. Results: A total of 154 genes were identified as DEGs, and 14 microRNAs were identified as DEMs. Pathway enrichment analysis showed that DEGs were mainly involved in hematopoietic cell lineage, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, chemokine signaling pathway, and JAK-STAT signaling pathway. Three important modules are identified and selected by the MCODE clustering algorithm. The top 12 hub genes, including CXCL16, CXCL1, GNB5, GNB4, OPRL1, SSTR2, IL7R, MYB, CSF1R, GSTM1, GSTM2, and GSTP1, were identified as important genes for subsequent analysis. Among these important hub genes, GSTM2, GNB4, GSTP1 and CXCL1 have the good diagnostic ability. Finally, by combining these four genes, the diagnostic ability of MDD can be improved to 0.905, which is of great significance for the clinical diagnosis of MDD. Conclusion: Our results indicate that GSTM2, GNB4, GSTP1 and CXCL1 have potential diagnostic markers and are of great significance in clinical research and diagnostic application of MDD. This result needs a large sample study to further confirm the pathogenesis of MDD.
-
-
-
Identification of the Diagnostic Signature of Sepsis Based on Bioinformatic Analysis of Gene Expression and Machine Learning
Authors: Qian Zhao, Ning Xu, Hui Guo and Jianguo LiBackground: Sepsis is a life-threatening disease caused by the dysregulated host response to the infection and the major cause of death of patients in the intensive care unit (ICU). Objective: Early diagnosis of sepsis could significantly reduce in-hospital mortality. Though generated from infection, the development of sepsis follows its own psychological process and disciplines, alters with gender, health status and other factors. Hence, the analysis of mass data by bioinformatics tools and machine learning is a promising method for exploring early diagnosis. Methods: We collected miRNA and mRNA expression data of sepsis blood samples from Gene Expression Omnibus (GEO) and ArrayExpress databases, screened out differentially expressed genes (DEGs) by R software, predicted miRNA targets on TargetScanHuman and miRTarBase websites, conducted Gene Ontology (GO) term and KEGG pathway enrichment analysis based on overlapping DEGs. The STRING database and Cytoscape were used to build protein-protein interaction (PPI) network and predict hub genes. Then we constructed a Random Forest model by using the hub genes to assess sample type. Results: Bioinformatic analysis of GEO dataset revealed 46 overlapping DEGs in sepsis. The PPI network analysis identified five hub genes, SOCS3, KBTBD6, FBXL5, FEM1C and WSB1. Random Forest model based on these five hub genes was used to assess GSE95233 and GSE95233 datasets, and the area under the curve (AUC) of ROC was 0.900 and 0.7988, respectively, which confirmed the efficacy of this model. Conclusion: The integrated analysis of gene expression in sepsis and the effective Random Forest model built in this study may provide promising diagnostic methods for sepsis.
-
-
-
Neobavaisoflavone Demonstrates Valid Anti-tumor Effects in Non-Small- Cell Lung Cancer by Inhibiting STAT3
Authors: Xueding Cai, Feng Zhou, Xiaona Xie, Dandan Zheng, Yulei Yao, Chengguang Zhao, Xiaoying Huang and Ke HuAim and Objective: Lung cancer is the most commonly occurring cancer, which contributes to the majority of death caused by cancer, where non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer. To treat NSCLC, STAT3 has been identified as a target with therapeutic potential. The neobavaisoflavone (NBIF) is one of the flavonoids of traditional Chinese medicine Psoralea corylifolial. Materials and Methods: Human NSCLC cell lines, PC-9, H460, and A549, were applied to determine NBIF’s anti-proliferative effects through cell viability and colony formation detection. The effect of NBIF on cell apoptosis was determined through flow cytometry-based assay. Western blotting was used in this study to confirm the levels of P-STAT3, Bcl-2, and Bax, which are apoptotic proteins. Results: It was observed that NBIF could decrease the cell viability and its migration and induce apoptosis in human NSCLC cell lines dose-dependently. Levels of P-STAT3, as well as the downstream signals of the STAT3 pathway, were downregulated, suggesting that the tumorsuppression effects of NBIF might be related to the inhibition of STAT3 signaling. Furthermore, NBIF could contribute to the upregulation of BAX and downregulation of BCL2. Conclusion: NBIF might perform the anti-NSCLC efficacy as a result of the inhibition of the STAT3 pathway. Besides, our work suggests that NBIF could provide therapeutic alternatives for NSCLC.
-
-
-
TargetMM: Accurate Missense Mutation Prediction by Utilizing Local and Global Sequence Information with Classifier Ensemble
Authors: Fang Ge, Jun Hu, Yi-Heng Zhu, Muhammad Arif and Dong-Jun YuAim and Objective: Missense mutation (MM) may lead to various human diseases by disabling proteins. Accurate prediction of MM is important and challenging for both protein function annotation and drug design. Although several computational methods yielded acceptable success rates, there is still room for further enhancing the prediction performance of MM. Materials and Methods: In the present study, we designed a new feature extracting method, which considers the impact degree of residues in the microenvironment range to the mutation site. Stringent cross-validation and independent test on benchmark datasets were performed to evaluate the efficacy of the proposed feature extracting method. Furthermore, three heterogeneous prediction models were trained and then ensembled for the final prediction. By combining the feature representation method and classifier ensemble technique, we reported a novel MM predictor called TargetMM for identifying the pathogenic mutations from the neutral ones. Results: Comparison outcomes based on statistical evaluation demonstrate that TargetMM outperforms the prior advanced methods on the independent test data. The source codes and benchmark datasets of TargetMM are freely available at https://github.com/sera616/TargetMM.git for academic use.
-
-
-
Exploring the Mystery of Osteoarthritis using Bioinformatics Analysis of Cartilage Tissue
Authors: Bin Wang, Jun-Long Zhong, Ning Jiang, Jie Shang, Biao Wu, Yu-Feng Chen and Hua-Ding LuBackground: Osteoarthritis (OA) is a kind of chronic disease relating to joints, which seriously affectsthe daily life activities of the elderly and can also lead to disability. However, the pathogenesis of OA is still unclear, which leads to limited treatment and the therapeutic effect far from people's expectations. This study aims to filter out key genes in the pathogenesis of OA and explore their potential role in the occurrence and development of OA. Methods: The dataset of GSE117999 was obtained and analyzed in order to identify the differentially expressed genes (DEGs), hub genes and key genes. We also identified potential miRNAs which may play a major role in the pathogenesis of OA, and verified their difference in OA by real-time quantitative PCR (RT-qPCR). DGldb was found to serve as an indicator to identify drugs with potential therapeutic effects on key genes and Receiver Operating Characteristic (ROC) analysis was used for identifying underlying biomarkers of OA. Results: We identified ten key genes, including MDM2, RB1, EGFR, ESR1, UBE2E3, WWP1, BCL2, OAS2, TYMS and MSH2. Then, we identified hsa-mir-3613-3p, hsa-mir-548e-5p and hsamir- 5692a to be potentially related to key genes. In addition, RT-qPCR confirmed the differential expression of identified genes in mouse cartilage with or without OA. We then identified Etoposide and Everolimus, which were potentially specific to the most key genes. Finally, we speculated that ESR1 might be a potential biomarker of OA. Conclusion: In this study, potential key genes related to OA and their biological functions were identified, and their potential application value in the diagnosis and treatment of OA has been demonstrated, which will help us to improve the therapeutic effect of OA.
-
-
-
Scutellaria barbata Flavonoids Improve the Composited Aβ-induced Abnormal Changes in Glial Cells of the Brains of Rats
Authors: Jian-Jun Cheng, Qing Guo, Xiao-Guang Wu, Shuai MA, Yang Gao and Shang Ya-ZhenAim: It has been reported that glial cells are involved in Alzheimer’s disease (AD). In our previous research, Scutellaria barbata flavonoids (SBFs) were found to protect the AD-like rats from neuronal disorder and memory impairment; however, the effect of SBFs on the glial cells disorder in AD-like rats has been less studied. The effects of SBFs on astrocytes (ASs), microglial cells (MGs), and oligodendrocytes (Ols), as well as heat shock protein 70 (Hsp70) and apolipoprotein E (ApoE), were investigated in the present study. Methods: The successful model rats, screened by Morris water maze, were orally administrated daily with 35, 70, and 140 mg/kg SBFs for 36 d. The number of brain astrocytes (ASs), microglial cells (MGs), and oligodendrocytes (Ols) was examined by immunohistochemistry. The expressions of cortical glial fibrillary acidic protein (GFAP), leukocyte common antigen (LCA) (CD45), Claudin 11, and heat shock protein 70 (Hsp70) protein were assayed by Western blotting, and the expression of apolipoprotein E (ApoE) mRNA was analyzed by real-time quantitative polymerase chain reaction (qPCR). Results: Compared with the sham-operated group, the number of ASs and MGs in the brain was significantly increased in the model group (P<0.05, P<0.01), accompanied by an increase in the expressions of GFAP, CD45, Hsp70 protein, and ApoE mRNA (P<0.05, P<0.01). Both Ols number and the expression of Claudin 11 protein decreased in the brain in the model group (P<0.05, P<0.01). However, the above-mentioned abnormal changes induced by composited Aβ were differently reversed by the treatment of SBFs at three doses of 35, 70, and 140 mg/kg (P<0.05, P<0.01). Conclusion: SBFs can dramatically improve the abnormal changes in glial cells of the brains of rats, induced by composited Aβ, which may be utilized as a helpful treatment for neurodegenerative diseases.
-
-
-
Prognostic Hub Genes in the Immune Microenvironment of Lung Adenocarcinoma by Estimation
Authors: Shanshan Liu, Wenjuan Tian and Burong LiBackground: The mortality of lung adenocarcinoma (LUAD) is high. Recent studies have found that the degree of immune infiltration and stromal cells in the tumour microenvironment or tumours makes a significant contribution to prognosis. Methods: During the study, we screened differentially expressed genes (DEGs) of the TCGA database for prognostic genes in the LUAD immune microenvironment. Furthermore, immune and stromal cells were quantified using the ESTIMATE algorithm. To study the effects of immune and stromal cell-associated genes on the prognosis of LUAD, LUAD patients were divided into high and low groups according to their immune/stromal scores. The obtained scores were found to be related to the phenotype and survival rate of LUAD patients. By selecting DEGs with high expression in immune and stromal cells, we performed functional enrichment analysis and found that most genes are associated with pathways of cancer, stimulus response and MAPK signaling. The functions and enriched pathways of LUAD prognostic genes were shown by a protein-protein interaction (PPI) network. Nonetheless, an external database was used to validate the prognostic genes from the TCGA. Results: Prognostic genes were listed according to their expression position and protein function. Conclusion: We provided new targets for immunotherapy of LUAD, which further provide basic knowledge for future clinical research.
-
-
-
MicroRNA-96 is Downregulated in Sepsis Neonates and Attenuates LPSInduced Inflammatory Response by Inhibiting IL-16 in Monocytes
Authors: Chunlei Zhang, Xiuting Li, Na Liu, Zijian Feng and Chengyuan ZhangBackground: Neonatal sepsis (NS) remains one of the leading causes of mortality among newborns. This study found the deregulated microRNA-96 (miR-96) in NS neonates, and aimed to evaluate the clinical significance of miR-96, as well as its effect on LPS-induced inflammatory response in monocytes. In addition, the relationship of interleukin-16 (IL-16) and miR-96 was investigated to understand the underlying mechanisms. Methods: Expression of miR-96 was examined using real-time quantitative PCR. Monocytes stimulated by LPS was used to mimic excessive inflammation in the pathogenesis of NS. The enzyme-linked immunosorbent assay was applied to evaluate pro-inflammatory cytokine levels. A luciferase reporter assay was used to confirm the interaction between miR-96 and IL-16. Results: Serum miR-96 expression was decreased in NS newborns and had considerable diagnostic value for NS screening. LPS inhibited miR-96 expression in monocytes, and the overexpression of miR-96 could reverse the effects of LPS on the inflammation of monocytes. IL-16 was a target gene of miR-96 and negatively correlated with miR-96 levels in NS neonates. The inhibited inflammatory responses induced by miR-96 overexpression was abolished by the elevated IL-16 in monocytes. Conclusion: All the data reveal that serum decreased miR-96 may serve as a candidate noninvasive biomarker for NS diagnosis. In addition, miR-96 inhibits LPS-induced inflammatory responses by targeting IL-16 in monocytes. The miR-96/IL-16 axis may provide novel therapeutic targets for NS treatment.
-
-
-
Synthesis of Eicosapentaenoic Acid-enriched Phosphatidylcholine and its Effect on Pro-inflammatory Cytokine Expression
Authors: Jae Yeul Baek, Eun Na and Sun Y. LimAim and Objective: We synthesized eicosapentaenoic acid-enriched phosphatidylcholine (EPA-PC) and investigated its effect on the production of lipopolysaccharide (LPS)- induced cytokines in murine splenocytes. Material and Methods: The culture supernatants of splenocytes, which was exposed to EPA-PC along with LPS, was harvested to determine the production of cytokines [interleukin (IL)-4 , IL-5, IL-6, interferon (IFN)-γ, IL-2 and IL-12/IL-23(p40)]. Cytokines were measured using enzymelinked immunosorbent assay (ELISA). Results: The co-administration of EPA-PC with LPS resulted in a significantly lower IFN-γ expression than that observed with LPS alone (p < 0.01). Moreover, treatment with EPA-PC and LPS significantly decreased IL-2, IL-6 and IL-12/IL-23(p40) expression (p < 0.01). Coadministration of EPA-PC at a concentration of 0.3 μg/mL with LPS resulted in a higher IL-5 expression after 24 hr of treatment when compared to LPS alone (p < 0.05). Conclusion: These results suggest that EPA-PC is more effective in decreasing the expression of pro-inflammatory cytokines [IL-2, IFN-γ, IL-6 and IL-12/IL-23(p40)] upon induction of inflammation.
-
-
-
Ziziphus spina-christi Leaf Extract Mitigates Mercuric Chloride-induced Cortical Damage in Rats
Authors: Rafa S. Almeer, Saad Alkahtani, Saud Alarifi, Ahmed E. Abdel Moneim, Saba Abdi and Gadah AlbasherBackground: Mercuric chloride (HgCl2) severely impairs the central nervous system when humans are exposed to it. Aims: We investigated the neuroprotective efficiency of Ziziphus spina-christi leaf extract (ZSCLE) on HgCl2-mediated cortical deficits. Methods: Twenty-eight rats were distributed equally into four groups: the control, ZSCLE-treated (300 mg/kg), HgCl2-treated (0.4 mg/kg), and ZSCLE+HgCl2-treated groups. Animals received their treatments for 28 days. Results: Supplementation with ZSCLE after HgCl2 exposure prevented the deposition of mercury in the cortical slices. It also lowered malondialdehyde levels and nitrite and nitrate formation, elevated glutathione levels, activated its associated-antioxidant enzymes, glutathione reductase, and glutathione peroxidase, and upregulated the transcription of catalase and superoxide dismutase and their activities were accordingly increased. Moreover, ZSCLE activated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 when compared with the HgCl2 group. Notably, post-treatment with ZSCLE increased the activity of acetylcholinesterase and ameliorated the histopathological changes associated with HgCl2 exposure. Furthermore, ZSCLE blocked cortical inflammation, as observed by the lowered mRNA expression and protein levels of interleukin-1 beta and tumor necrosis factor-alpha, as well as decreased mRNA expression of inducible nitric oxide synthase. In addition, ZSCLE decreased neuron loss by preventing apoptosis in the cortical tissue upon HgCl2 intoxication. Conclusion: Based on the obtained findings, we suggest that ZSCLE supplementation could be applied as a neuroprotective agent to decrease neuron damage following HgCl2 toxicity.
-
-
-
A Pilot Study for Investigation of Plasma Amino Acid Profile in Neurofibromatosis Type 1 Patients
Authors: Ozlem Oz, Ismail Koyuncu and Ataman GonelBackground: Neurofibromatosis, also known as Von Recklinghausen disease, is a systemic and progressive genetic disease that primarily affects the skin, eyes, nervous system, and bones. The disease can occur in a variety of ways and can vary in individuals. Metabolomic-based research using blood samples has enabled new diagnostic methods to be used in the diagnosis of various diseases, especially cancer. Among the metabolites, profiling of plasma free amino acids (PFAA) is a promising approach because PFAAs bind all organ systems and play an important role in the metabolism. Objective: This study aimed to determine the characteristics of PFAA profiles in neurofibromatosis patients and the possibility of using them for early detection and treatment of the disease. Methods: Patients with a diagnosis of Neurofibromatosis Type I confirmed by genetic analysis and healthy individuals of the same age group without any disease were included in the study. We analysed the nineteen plasma free amino acids (phenylalanine, proline, threonine, arginine, asparagine, cystine, valine, glutamate, tyrosine, serine, glutamine, glycine, tryptophane, leucine, lysine, methionine, isoleucine, aspartate and alanine) from neurofibromatosis Type I patients and control group by liquid chromatography tandem mass spectrometry (LC-MS/MS) in Metabolism Laboratory of Harran University Research and Application Hospital. The results of the plasma free amino acid levels were divided into 3 groups as essential, semi-essential, and non-essential. The differences in amino acid levels between groups were determined. Results: The levels of eight amino acids (methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate) were significantly altered in patients with neurofibromatosis type 1. In essential amino acids, methionine levels were significantly higher in the patient group than control group. While the levels of arginine and glutamine in semi-essential amino acids were statistically significantly higher in the patient group, a significant decrease was observed in cystine and proline levels compared to the control group's amino acid levels. In the non-essential amino acids group, asparagine, serine and aspartate amino acid levels were significantly higher in the patient group compared to the control group. Conclusion: The current research predicates that eight amino acids, namely methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate can be considered to be valuable biomarkers for neurofibromatosis type I. This present study is the first to build models for neurofibromatosis Type I screening using plasma free amino acids and the amino acid profile will be able to guide the prediction of the complications that may occur during the course of the disease.
-
-
-
Identification of Therapeutic Drug Target of Stenotrophomonas maltophilia Through Subtractive Genomic Approach and in-silico Screening Based on 2D Similarity Filtration and Molecular Dynamic Simulation
Authors: Rahul Chandela, Dhananjay Jade, Surender Mohan, Ridhi Sharma and Shobana SugumarBackground: Stenotrophomonas maltophilia is a multi-drug resistant, gram-negative bacterium that causes opportunistic infections and is associated with high morbidity and mortality in severely immunocompromised individuals. Aim: The study aimed to find out the drug target and a novel inhibitor for Stenotrophomonas maltophilia. Objectives: The current study focused on identifying specific drug targets by subtractive genomes analysis to determine the novel inhibitor for the specified target protein by virtual screening, molecular docking, and molecular simulation approach. Materials and Methods: In this study, we performed a subtractive genomics approach to identify the novel drug target for S.maltophilia. After obtaining the specific target, the next step was to identify inhibitors that include calculating 2D similarity search, molecular docking, and molecular simulation for drug development for S.maltophilia. Results: With an efficient subtractive genomic approach, out of 4386 proteins, five unique targets were found, in which UDP-D-acetylmuramic (murF) was the most remarkable target. Further virtual screening, docking, and dynamics analyses resulted in the identification of seven novel inhibitors. Conclusion: Further, in vitro and in vivo bioassay of the identified novel inhibitors could facilitate effective drug use against S.maltophilia.
-
-
-
Identification of Major Compounds and α-Amylase and α-Glucosidase Inhibitory Activity of Rhizome of Musa balbisiana Colla: An in-vitro and in-silico Study
Authors: Ananta Swargiary and Manita DaimariBackground: α-Amylase and α-glucosidase inhibitors are widely used to suppress postprandial glycemia in the treatment of type-2 diabetes. Objectives: To evaluate the metallic content, phytocompounds, and α-amylase and α-glucosidase inhibitory activity of Musa balbisiana rhizome using in-vitro and in-silico methods. Materials and Methods: Heavy metal content was detected by AAS following standard protocol. Major phytochemicals of the plant were analyzed by GC-MS technique. Enzyme inhibition study was carried out by UV/VIS spectrophotometric methods. The drug-likeness and bio-availability properties of major compounds were carried out using computer-aided tools – SwissADME and ADMElab. Docking and visualization were performed in AutoDock vina and Discovery studio tools. Results: The study found that the fruits of M. balbisiana contain a negligible amount of toxic elements. GC-MS analysis showed five major compounds from the rhizome of M. balbisiana. Invitro enzyme assays revealed strong α-amylase and α-glucosidase inhibitory properties of the plant. All five compounds were predicted to have a drug-likeness property with high cell membrane permeability and bio-availability. The compounds were also predicted to have low to moderate toxicity properties. The Docking study showed strong binding affinities of plant compounds with α-amylase and α-glucosidase. Out of five compounds, C5 showed the best binding affinity with active pockets of α-amylase and α-glucosidase. Conclusion: The in-vitro and in-silico study suggests the antihyperglycemic property of the rhizome of Musa balbisiana and a possible candidate for the therapeutic antidiabetic agent(s).
-
-
-
Investigating the Impact of Different Acrylamide (Electrophilic Warhead) on Osimertinib’s Pharmacological Spectrum by Molecular Mechanic and Quantum Mechanic Approach
Authors: Harun Patel, Iqrar Ahmad, Harsha Jadhav, Rahul Pawara, Deepak Lokwani and Sanjay SuranaBackground: Lung cancer has become the prominent cause of the cancer-related deaths globally. More than 80 % of all lung cancers have been diagnosed with Non- Small Cell Lung Cancer (NSCLC). The USFDA approved osimertinib to treat patients with metastatic T790M EGFR NSCLC on a regular basis in March 2017. Recently, C797S mutation to osimertinib has been reported, which indicates the need for structural modification to overcome the problem of mutation. Methods: In this bioinformatics study, we have evaluated the impact of various acrylamide as an electrophilic warhead on the activity and selectivity of osimertinib. Result: Osimertinib analouge 48, 50, 60, 61, 67, 75, 80, 86, 89, 92, 93, 116 and 124 were the most active and selective compounds against T790M EGFR mutants compared to Osimertinib. Conclusion: These compounds also showed less inclination towards WT-EGFR.
-
-
-
Design, Synthesis and Biological Evaluation of New Cycloalkyl Fused Quinolines Tethered to Isatin Schiff Bases as Cholinesterase Inhibitors
Aims and Objective: Alzheimer’s disease is now a most prevalent neurodegenerative disease of central nervous system leading to dementia in elderly population. Numerous pathological changes have been associated in the progression of Alzheimer’s disease. One of such pathological hypotheses is declined cholinergic activity which eventually leads to cognitive and memory deficits. Inhibition o f cholinesterases will apparently elevate acetyl choline levels which is benefactor on cognitive symptoms of the disease. This manuscript describes the new tacrine derivatives tethered to isatin Schiff bases through alkanoyl linker and screened for cholinesterase inhibitory activity. Materials and Methods: Tacrine and two more cycloalkyl ring fused quinolones were synthesized and converted to N-cycloalkyl fused quinoline chloroamides. Isatin Schiff bases were also synthesized by the reaction between isatin and substituted aromatic anilines and in subsequent reaction, isatin Schiff bases were reacted with cycloalkyl fused quinolones to afford anticipated compounds 10a-i, 11a-i and 12a-i. All the compounds have been screened for acetyl- and butyrylcholinesterase inhibitory activity and in vivo behavioral studies. Binding interactions of the desired compounds have also been studied by docking them in active site of both cholinesterases. Results: Three compounds 12d, 12e and 12h with propionyl and butyroyl linker between amine and isatin Schiff base scaffold have shown potent acetyl- and butyrylcholinesterase inhibitory activity. However most potent cholinesterase inhibitor was 13d with IC50 value of 0.71±0.004 and 1.08±0.02 μM against acetyl- and butyrylcholinesterases respectively. The hepatotoxicity of potent compounds revealed that the tested compounds were less hepatotoxic than tacrine and also exhibited encouraging in vivo behavioral studies in test animals. Docking studies of all the molecules disclosed close hydrogen bond interactions within the binding site of both cholinesterases. Conclusion: New cycloalkyl fused quinolones tethered with alkanoyl linker to isatin Schiff bases endowed significant and potent cholinesterase inhibitory activities. Few of the compounds have also exhibited lesser hepatotoxicity and all the synthesized compounds were good in behavioral studies. Molecular docking studies also indicated close interactions in active site of cholinesterases.
-
-
-
Synthesis and Biological Analysis of Anti-addiction Effect and Hepatotoxicity of Tow Baclofen Analogues Complexed with β-Cyclodextrin
Authors: Assia Keniche, Ibtissem EL Ouar, Ibtissem Zeghina and Mohammed E. A. DibAim and Objective: The excessive consumption of alcohol and the installation of dependence is, in most cases, facilitated by favorable psychological factors that trigger and maintain the behavior of consumers. Examples more frequently encountered in individuals having difficulty with alcohol are, in particular: one or more anxiety disorders, deficits in the capacities to manage stress and anxiety. The main objective of this work was to study in vivo the anti-addiction effect and hepatotoxicity of tow baclofen analogues complexed with β-Cyclodextrin (βCD) on an alcohol-dependent rat model. Materials and Methods: The synthesis of two analogues, ABF1 and ABF2, close to baclofen was reported. The structural determination of the two compounds was confirmed by NMR and IR analysis. The complexation of analogues with β-Cyclodextrin (βCD) was performed in water at room temperature (25 °C). The interactions of ABF with β-Cyclodextrin, and the stability constant (Ka) of the inclusion complex formed between them were investigated by using UV-visible spectroscopy. The biological effects of baclofen and the two analogues on alcohol dependence were studied in wistar rats. The anti-addiction effect of the analogues was tested by measuring the alcohol intake and the variation of the animal behaviour. The toxicity of the compounds was also analysed on liver injury markers. Results: The amino-3-phenylbutanoic acid (ABF1) and 3,4,5-trihydroxy-N-(methyl-2-acetate) benzamide (ABF2) were synthesized. The complexation of both analogues of baclofen (BF) with β-cyclodextrin (βCD) (ABF- βCD) was realized and confirmed by the stability constant of the inclusion complex (Ka) and Job’s method. The evaluation of anti-addiction activity in vivo showed that ABF1-βCD inhibits the consumption of alcohol at doses equivalent to those of baclofen. Both baclofen analogues have shown an anxiolytic effect. Regarding the toxicity of the two compounds, our results showed that ABF1-βCD has less toxic effect than baclofen; it reduces the activity of ALT and AST enzymes. Histologically, ABF1-βCD has no effect on the liver structure and has a protective effect against lesions alcohol-induced liver disease. Conclusion: Therefore, it can be suggested that ABF1 analogue combined with β-Cyclodextrin can be used as a treatment for alcohol dependence. Further clinical works are needed to confirm its effectiveness.
-
-
-
Catechin Derivatives as Inhibitor of COVID-19 Main Protease (Mpro): Molecular Docking Studies Unveil an Opportunity Against CORONA
More LessBackground: A newly emergent strain of coronavirus (COVID-19) has affected almost the whole of the world’s population. Currently, there is no specific vaccine or drug against COVID-19. Xu et al. (2020) built a homolog model of SARS-CoV-2 Mpro based on SARS-CoV Mpro, which is considered as a target to inhibit the replication of CoV. Objective: The aim of the current study was to find potential inhibitors of COVID-19 Mpro using docking analysis. Methods: Autodockvina was used to carry out Protein-Ligand docking. COVID-19 main protease Mpro was docked with catechin and its different synthetic derivatives. Nelfinavir, an antiretroviral drug belonging to protease inhibitors, was taken as the standard. Results: According to the result obtained, it was found that Compound (4) and Compound (1) have more affinity than nelfinavir. Conclusion: Compounds were found to have a great potential to become COVID-19 main protease Mpro inhibitor. Nevertheless, for their medicinal use, further investigation is necessary.
-
-
-
Assessment of Anti-inflammatory Activity of 3-Acetylmyricadiol in LPSStimulated Raw 264.7 Macrophages
Authors: Gazanfar Ahmad, Reyaz Hassan, Neerupma Dhiman and Asif AliBackground: Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activities, including anti-inflammatory action. Objective: In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark extract of Myrica esculenta and evaluated it for anti-inflammatory potential. Methods: The ethyl acetate bark extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like nitric oxide, IL-6, TNF-α were observed after the administration of 5, 10, 20 μM of 3-Acetylmyricadiol in LPS-activated raw 246.7 macrophages by the reported methods. Results: MTT assay indicated more than 90% cell viability up to 20 μM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 μM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, and 55.37 % inhibition of nitric oxide, IL-6, and TNF-α, respectively. Conclusion: Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less