Combinatorial Chemistry & High Throughput Screening - Volume 21, Issue 3, 2018
Volume 21, Issue 3, 2018
-
-
Docking of Natural Products against Neurodegenerative Diseases: General Concepts
Background: Since antiquity, humanity has used medicinal plant preparations to cure its ills, and, as research has progressed, new technologies have enabled more investigations on natural compounds which originate from plants, fungi, and marine species. The health benefits that these natural products provide have become a motive for treatment studies of various diseases. Objective: Among them, the neurodegenerative diseases like Alzheimer's and Parkinson's, a major age-related neurodegenerative disorder. Studies with natural products for neurodegenerative diseases (particularly through molecular docking) search for, and then focus on those ligands which offer effective inhibition of the enzymes monoamine oxidase and acetylcholinesterase. Method: This review introduces the main concepts involved in docking studies with natural products: and also in our group, which has conducted a docking study of natural products isolated from Tetrapterys mucronata for inhibition of acetylcholinesterase. Results: We observed that compounds 4 and 5 formed more interactions than the theoretical ligand, but that ligands with greater activity also interacted with residues HIS 381 and GLN 527. Conclusion: We have reported on our docking study performed with AChE and alkaloids isolated from the plant Tetrapterys mucronata. Our docking results corroborate the experiments conducted, and emphasize the positive contribution that these theoretical studies involving natural products bring to the fight against neurodegenerative diseases.
-
-
-
Herbal Products for Common Auto-Inflammatory Disorders - Novel Approaches
Authors: Shanoo Suroowan and Fawzi MahomoodallyBackground: Common auto-inflammatory disorders (CAIDs) constitute a wide array of ailments ranging from acute allergies to chronic conditions. Globally, CAIDs remain one of the leading causes of disability and morbidity. Despite playing a leading therapeutic role, the vast profusion of anti-inflammatory synthetic agents have not been able to fully resolve a panoply of CAIDs. Additionally, contemporary synthetic therapy approaches remain bounded by a wide array of limitations essentially being adverse effects and unaffordable costs. In this advent, the use of herbal products provides an interesting avenue to explore in view of developing such treatment regimens. Objective: This review article endeavors to highlight potential herbal products and isolated phytochemicals which can be of benefit in the prophylaxis, management, and treatment alongside avoiding the relapse of CAIDs. Conclusion: This review article has highlighted that herbals, herbal products, and isolated metabolites hold a huge potential in the prophylaxis, management, and treatment of CAIDs. Herbals can act on various targets involved in the pathogenesis of inflammatory disorders. In addition, novel approaches for the management of CAIDs are numerous. Indeed, nanoparticles loaded with phytochemicals have been developed to specifically target the colon for IBD treatment. In silico approaches using herbals also offer unlimited avenues to decipher new pharmacophores. Investigating the potential of polyherbal formulations is another unique approach which can be investigated. Given the inefficacy of conventional medicines, the concomitant use of conventional and herbal medicines can also be explored.
-
-
-
Pharmacoinformatics and Molecular Docking Studies Reveal Potential Novel Compounds Against Schizophrenia by Target SYN II
Authors: Rana A. Tahir and Sheikh Arslan SehgalBackground: Synapsin II regulates neurotransmitter release from mature nerve terminals and plays important role in the formation of new nerve terminals. The associations of SYN II are identified in various studies that are linked to the onset of Schizophrenia. Schizophrenia is characterized by abnormal behavior like obsession, dampening of emotions and auditory hallucination. Methods: The bioinformatics approaches were utilized for structural modeling and docking analyses of SYN II followed by pharmacophore generation to identify potent inhibitors. Results: The comparative modeling approach was employed to generate the 3D model having 82.404% quality factor calculated by Errat. Pharmacophore was constructed by utilizing merge molecular and chemical features of selected five FDA approved Schizophrenia drugs by LigandScout 4.1.5. Comparative docking analyses were performed by utilizing the selected drugs and top screened hits by GOLD and AutoDock Vina. Conclusion: It was proposed that Aripiprazole drug and scrutinized compounds have strong binding affinities among the other selected drugs. The reported compounds may be used for further analyses in the drug discovery processes, as they have shown good human intestinal absorption and are noncarcinogenic. The present study provides the structural insights which may be used for further understating of the Schizophrenia therapeutic purposes by targeting SYN II and other inhibitors haunting.
-
-
-
Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors
Authors: Amit Lather, Sunil Sharma and Anurag KhatkarBackground: Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Aim and Objective: Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. Materials and Methods: The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Results: Molecular docking studies were carried out to identify the binding affinities and interaction between the inhibitors and the target proteins (G-6-P synthase) by using Glide software (Schrodinger Inc. U.S.A.-Maestro version 10.2). Grid-based Ligand Docking with Energetic (Glide) is one of the most accurate docking softwares available for ligand-protein, protein-protein binding studies. A library of hundreds of available ligands was docked against targeted proteins G-6-P synthase having PDB ID 1moq. Results of docking are shown in Table 1 and Table 2. Results of G-6-P synthase docking showed that some compounds were found to have comparable docking score and binding energy (kj/mol) as compared to standard antibiotics. Many of the ligands showed hydrogen bond interaction, hydrophobic interactions, electrostatic interactions, ionic interactions and π- π stacking with the various amino acid residues in the binding pockets of G-6-P synthase. Conclusion: The docking study estimated free energy of binding, binding pose andglide score and all these parameters provide a promising tool for the discovery of new potent natural inhibitors of G-6-P synthase. These G-6-P synthase inhibitors could further be used as antimicrobials. Here, a detailed binding analysis and new insights of inhibitors from various classes of molecules were docked in binding cavity of G-6-P synthase. ADME and toxicity prediction of these compounds will further accentuate us to study these compounds in vivo. This information will possibly present further expansion of effective antimicrobials against several microbial infections.
-
-
-
Pyrazole Schiff Base Hybrids as Anti-Malarial Agents: Synthesis, In Vitro Screening and Computational Study
Authors: Shilpy Aggarwal, Deepika Paliwal, Dhirender Kaushik, Girish K. Gupta and Ajay KumarBackground: Malaria is one of the most vital infectious diseases caused by protozoan parasites of the Plasmodium genus. As P. falciparum, the cause of most of the severe cases of malaria, is increasingly resistant to available drugs such as amodioquine, chloroquine, artemisinin, and antifolates, there is an urgent need to identify new targets for chemotherapy. Objective: This study screened novel pyrazole derivatives carrying iminium & benzothiazole group for antimalarial potential against P. falciparum chloroquine sensitive (3D7) strain. Materials & Methods: Several pyrazole schiff base hybrids with a wide range of substitution have been synthesized via condensation of substituted aniline with substituted 4-formylpyrazole and evaluated for their in vitro antimalarial activity against asexual blood stages of human malaria parasite, Plasmodium falciparum. The interaction of these conjugate hybrids was also investigated by molecular docking studies in the binding site of P. falciparum cystein protease falcipain-2. The pharmacokinetic properties were also studied using ADME prediction. Results: Among all compounds, 6bf and 6bd were found to be potential molecules with EC50 1.95μg/ml and 1.98μg/ml respectively. Docking study results reveal that the pyrazole schiff base derivatives occupy the PfFP binding sites and they show good interactions with significant values of binding energies. Conclusion: We provide evidence which implicates pyrazole Schiff base hybrids as potential prototypes for the development of antimalarial agents.
-
-
-
QSAR Analysis for Antioxidant Activity of Dipicolinic Acid Derivatives
Authors: Vesna Rastija, Maja Molnar, Tena Siladi and Vijay H. MasandAims and Objectives: The aim of this study was to derive robust and reliable QSAR models for clarification and prediction of antioxidant activity of 43 heterocyclic and Schiff bases dipicolinic acid derivatives. According to the best obtained QSAR model, structures of new compounds with possible great activities should be proposed. Methods: Molecular descriptors were calculated by DRAGON and ADMEWORKS from optimized molecular structure and two algorithms were used for creating the training and test sets in both set of descriptors. Regression analysis and validation of models were performed using QSARINS. Results: The model with best internal validation result was obtained by DRAGON descriptors (MATS4m, EEig03d, BELm4, Mor10p), split by ranking method (R2 = 0.805; R2 ext = 0.833; F =30.914). The model with best external validation result was obtained by ADMEWORKS descriptors (NDB, MATS5p, MDEN33, TPSA), split by random method (R2 = 0.692; R2 ext = 0.848; F = 16.818). Conclusion: Important structural requirements for great antioxidant activity are: low number of double bonds in molecules; absence of tertial nitrogen atoms; higher number of hydrogen bond donors; enhanced molecular polarity; and symmetrical moiety. Two new compounds with potentially great antioxidant activities were proposed.
-
-
-
In-silico Studies of Isolated Phytoalkaloid Against Lipoxygenase: Study Based on Possible Correlation
Authors: Haroon Khan, Muhammad Zafar, Helena Den-Haan, Horacio Perez-Sanchez and Mohammad A. KamalAim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.
-
-
-
Extraction, Identification and Biological Activities of Saponins in Sea Cucumber Pearsonothuria graeffei
Authors: Rafat A. Khattab, Mohamed Elbandy, Andrew Lawrence, Tim Paget, Jung Rae-Rho, Yaser S. Binnaser and Imran AliAims and Objectives: Secondary metabolism in marine organisms produces a diversity of biologically important natural compounds that are not present in terrestrial species. Sea cucumbers belong to the invertebrate Echinodermata and are famous for their nutraceutical, medical and food values. They are known for possession triterpenoid glycosides (saponins) with various ecological roles. The current work aimed to separate, identify and test various biological activities (antibacterial, antifungal, antileishmanial and anticancer properties) of saponins produced by the holothurian Pearsonothuria graeffei from the Red Sea, Egypt. Materials and Methods: The structures were identified by 1D and 2D NMR (1H, 13C, TOCSY, COSY, HSQC, HMBC, and ROESY) experiments and acid hydrolysis. The crude and purified fractions was analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS to identify saponins and characterize their molecular structures. Partially purified fraction, mainly containing compounds 1 and 2, was screened for its antifungal activity against three clinical isolates of Candida albicans (Candida 580 (1), Candida 581(2) and Candida MEO47228. Antileishmanial activity against Leishmania major and toxicity on colon cell-line were also evaluated. Results: Two lanostane type sulfated triterpene monoglycosides were isolated from the Holothurian Pearsonothuria graeffei from the Red Sea, Egypt. Holothurin A (1) and echinoside A (2) triterpene saponins were separated by reversed phase semi-preparative HPLC. LC50 values (μg/mL); calculated for the fraction containing saponins 1 and 2 as major constituents; against Candida albicans, Leishmania major and colon cell-line were 10, 20 and 0.50, respectively. Conclusion: Consequently, this study demonstrated the potential use of sea cucumber Pearsonothuria graeffei not only as appreciated functional food or nutraceuticals but also as the source of functional ingredients for pharmaceutical products with antifungal, antileishmanial and anticancer properties.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less