Combinatorial Chemistry & High Throughput Screening - Volume 21, Issue 1, 2018
Volume 21, Issue 1, 2018
-
-
A Clean, Mild, and Efficient Preparation of Aryl 14H-benzo[a,j]xanthene leuco-dye Derivatives Via Nanocatalytic MCM-41-SO3H Under Ultrasonic Irradiation in Aqueous Media
More LessAuthors: Mostafa Fathollahi, Shahnaz Rostamizadeh and Ali M. AmaniAim and Objective: The present study has developed an efficient and eco-friendly protocol for the synthesis of aryl-14-H-dibenzo[a,j] xanthenes through a one-pot condensation reaction of 2-naphthol and arylaldehydes in aqueous media using the nanocatalytic MCM-41-SO3H under ultrasonic illumination. Material and Methods: Using SEM and XRD analyses, MCM-41-SO3H nanoparticles were characterized. Therefore, for high magnification, taking the SEM image, the mesoporous surface of MCM-41-SO3H nanoparticles coated with gold for 2 minutes was characterized. Moreover, at a scan rate of 0.02° (2Θ)/sec, XRD analysis from 1.5° (2Θ) to 10.0° (2Θ) was performed. Result: For our considered sample, some well-ordered XRD patterns with one main peak as well as three minor peaks equal to those of MCM-41 materials were observed. Conclusion: The suggested route demonstrates very promising properties like higher yields, decrease in the time of reaction (5-10 min), mild and straightforward conditions, low level of toxicity, and inclusion of a cost-efficient and ecofriendly catalyst having considerable reusability.
-
-
-
A Phosphine-mediated Synthesis of 2,3,4,5-tetra-substituted N-hydroxypyrroles from α-oximino Ketones and Dialkyl Acetylenedicarboxylates Under Ionic Liquid Green-media
More LessBackground: The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. Objective: We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Result: Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. Conclusion: In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method.
-
-
-
Citrus Juice: Green and Natural Catalyst for the Solvent-free Silica Supported Synthesis of β-Enaminones Using Grindstone Technique
More LessAuthors: Omid Marvi and Leila Z. FekriAim and Objective: Citrus Juice as an efficient, cost-effective and green catalyst employed for one-pot synthesis of various β-substituted enaminones through the reaction of β- dicarbonyl compounds with different primary amines in a solvent-free conditions on silica gel as solid surface using grindstone technique in high yields and short reaction times. The presented procedure is operationally simple, practical and green. Material and Methods: The wide application of this procedure is demonstrated by the use of various substituted amines to react with β-dicarbonyl compounds. The method was successfully applied for primary amines (15 entries) and the related enaminones were well synthesized in good to excellent yields. Melting points were measured on an Electro thermal 9100 apparatus. 1HNMR and 13C NMR spectra were recorded on a FTNMR BRUKER DRX 500 Avence spectrometer. Chemical shifts were given in ppm from TMS as internal references and CDCl3 was used as the solvent as well. The IR spectra were recorded on a Perkin Elmer FT-IR GX instrument. The chemicals used in this work were purchased from Merck and Fluka chemical companies. Results: Grinding synthesis of citrus juice catalyzed enamination of 1,3-dicarbonyls (acetylacetone, methyl and ethyl- 3-oxobutanoate) with various primary amines ( aromatic and aliphatic) under solvent-free silica supported conditions was examined and studied (15 entries) and the obtained enaminones were well synthesized in good to excellent yields. Furthermore, the effect of various catalysts on the yield and reaction time for grinding synthesis of 3-phenylamino- but- 2- enoic acid ethyl ester (1) by this method has evaluated as well. Conclusion: a novel, efficient and green protocol for the grinding synthesis of enaminones using citrus juice as natural catalyst has been presented. This methodology is user friendly, green and low cost procedure under mild reaction condition with faster reaction rates. The citrus juice is inexpensive and non-toxic which makes the process convenient, more economic and benign. Furthermore, applying grindstone technique in solvent-free conditions, use of silica gel as a solid and heterogeneous surface in reaction, high yields of products, cleaner reaction profiles, and availability of the reagents makes this method a better choice for synthetic chemists.
-
-
-
Multi-Pharmacophore Modeling of Caspase-3 Inhibitors using Crystal, Dock and Flexible Conformation Schemes
More LessAuthors: Sivakumar P. Kumar and Prakash Chandra JhaAim and Objective: Numerous caspase-3 drug discovery projects were found to have relied on single receptor as the template to recognize most promising small molecule candidates using docking approach. Alternatively, some researchers were contingent upon ligand-based alignment to build up an empirical relationship between ligand functional groups and caspase-3 inhibitory activity quantitatively. To connect both caspase-3 receptor details and its inhibitors chemical functionalities, this study was undertaken to develop receptor- and ligand-pharmacophore models based on different conformational schemes. Material and Methods: A multi-pharmacophore modeling strategy is carried out based on three conformational schemes of pharmacophore hypothesis generation to screen caspase-3 inhibitors from database. The schemes include (i) flexible (conformations unrestricted or flexible during pharmacophore mapping), (ii) dock (conformations obtained using FlexX docking method) and (iii) crystal (extracted from multiple caspase-3-ligand complexes from PDB repository) conformations of query ligands. The pharmacophore models developed using these conformational schemes were then used to identify probable caspase-3 inhibitors from ZINC database. Results: We noticed better sensitivity with good specificity measures returned by candidate pharmacophore hypotheses across each conformation type and recognized crucial pharmacophore features that enable caspase-3 binding. Pharmacophore modeling based on flexible conformational scheme indicated that the crystal structure 3KJF (AAAADH) is the best receptor structure to perform receptor-based pharmacophore screening of caspase-3 inhibitors. When multiple crystal structures were included, the hypothesis (HAAA) is more generalized. Superimposition of multiple co-crystal ligands from various caspase-3 PDB entries in crystallographic binding mode revealed similar hypothesis (HAAA). Further, FlexX-guided dock conformations of validation dataset showed that the crystal structure 1RE1 is the best-suited for dock-based pharmacophore models. Database screening using these pharmacophore hypotheses identified N'-[6-(benzimidazol-1-yl)-5-nitro-pyrimidin-4-yl]-4 methylbenzenesulfonohydrazide and 2-nitro-N'-[5-nitro-6-[N'-(p-tolylsulfonyl)hydrazino]pyrimidin-4- yl]benzohydrazide as the probable caspase-3 inhibitors. Conclusion: N'-[6-(benzimidazol-1-yl)-5-nitro-pyrimidin-4-yl]-4 methylbenzenesulfonohydrazide and 2-nitro-N'-[5-nitro-6-[N'-(p-tolylsulfonyl)hydrazino]pyrimidin-4-yl]benzohydrazide may be tested for caspase-3 inhibition. We believe that potential caspase-3 inhibitors can be recognized efficiently by adapting multi-pharmacophore models in database screening.
-
-
-
Identification of Human Acetylcholinesterase Inhibitors from the Constituents of EGb761 by Modeling Docking and Molecular Dynamics Simulations
More LessAuthors: Lihu Zhang, Dongdong Li, Fuliang Cao, Wei Xiao, Linguo Zhao, Gang Ding and Zhen zhong WangAim and Objective: EGb761, a standardized and well-defined product extract of Ginkgo biloba leaves, has beneficial role in the treatment of multiple diseases, particularly Alzheimer's disease (AD). Identification of natural acetylcholinesterase (AChE) inhibitors from EGb761 would provide a novel therapeutic approach against the Alzheimer's disease. Material and Method: A series of 21 kinds of promising EGb761 compounds were selected, and subsequently evaluated for their potential ability to bind AChE enzyme by molecular docking and a deep analysis of protein surface pocket features. Results: Docking results indicated that these compounds can bind tightly with the active site of human AChE, with favorable distinct interactions around several important residues Asp74, Leu289, Phe295, Ser293, Tyr341, Trp286 and Val294 in the active pocket. Most EGB761 compounds could form the hydrogen bond interactions with the negatively charged Asp74 and Phe295 residues. Among these compounds, diosmetin is the one with the best-predicted docking score while three key hydrogen bonds can be formed between small molecule and corresponding residues of the binding site. Besides, other three compounds luteolin, apigenin, and isorhamnetin have better predicted docking scores towards AChE than other serine proteases, i.e Elastase, Tryptase, Factor XA, exhibiting specificity for AChE inhibition. The RMSD and MM-GBSA results from molecular dymamic simulations indicated that the docking pose of diosmetin-AChE complex displayed highly stable, which can be used for validating the accuracy of molecular docking study. Subsequently, the AChE inhibitory activities of these compounds were evaluated by the Ellman's colorimetric method. Conclusion: The obtained results revealed that all the four compounds exhibited modest AChE inhibitory activity, among which Diosmetin manifested remarkable anti-AChE activity, comparable with the reference compound, Physostigmine. It can be deduced that these EGB761 compounds can be regarded as a promising starting point for developing AChE inhibitors against AD.
-
-
-
A High-throughput Screening of a Chemical Compound Library in Ovarian Cancer Stem Cells
More LessAuthors: F. Ricci, L. Carrassa, M. S. Christodoulou, D. Passarella, B. Michel, R. Benhida, N. Martinet, A. Hunyadi, E. Ioannou, V. Roussis, L. Musso, S. Dallavalle, R. Silvestri, N. Westwood, M. Mori, C. Ingallina, B. Botta, E. Kavetsou, A. Detsi, Z. Majer, F. Hudecz, S. Bosze, B. Kaminska, T.V. Hansen, P. Bertrand, C. M. Athanassopoulos and G. DamiaBackground: Epithelial ovarian cancer has a poor prognosis, mostly due to its late diagnosis and the development of drug resistance after a first platinum-based regimen. The presence of a specific population of “cancer stem cells” could be responsible of the relapse of the tumor and the development of resistance to therapy. For this reason, it would be important to specifically target this subpopulation of tumor cells in order to increase the response to therapy. Method: We screened a chemical compound library assembled during the COST CM1106 action to search for compound classes active in targeting ovarian stem cells. We here report the results of the high-throughput screening assay in two ovarian cancer stem cells and the differentiated cells derived from them. Results and Conclusion: Interestingly, there were compounds active only on stem cells, only on differentiated cells, and compounds active on both cell populations. Even if these data need to be validated in ad hoc dose response cytotoxic experiments, the ongoing analysis of the compound structures will open up to mechanistic drug studies to select compounds able to improve the prognosis of ovarian cancer patients.
-
-
-
Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms
More LessAuthors: Rajnish Kumar, Anju Sharma, Mohammed H. Siddiqui and Rajesh Kumar TiwariAim and Objective: Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. Materials and Methods: In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. Results: The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. Conclusion: This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development.
-
-
-
One-pot Synthesis of Novel 2-pyrazolo-3-phenyl-1,3-thiazolidine-4-ones Using DSDABCOC as an Effective Media
More LessAuthors: Hasti Taherkhorsand and Mohammad NikpassandBackground: Thiazolidine compounds are known to show interesting pharmacological activity. In particular, they are used as antiseizure, fungicidal, anti-bacterial, antitubercular, antiinflammatory, antiamoebic, anti-diabetic and local anesthetic agents. Some of these compounds have also shown antiparkinsonism, antioxidant, anticonvulsant, hypoglycemic and non-narcotic analgesic activities. On the other hand, pyrazoles have shown antibacterial, antitumor, antiviral, antifungal, anti-tubercular, antiparasitic, anesthetic, anti-diabetic, anti-inflammatory, analgesic and insecticidal activities. In order to improve the pharmacological effects of thiazolidine-4-ones, new pyrazole derivatives have been synthesized. Material and Methods: A mixture of pyrazolcarbaldehydes, anilines, thioglycolic acid and DSDABCOC was stirred at room temperature for the required reaction times. The progress of the reaction was monitored by TLC (EtOAc: petroleum ether 1:3). After completion of the reaction as indicated by TLC, the ionic liquid was separated by extraction with 2×15 mL of water. The solid residue was separated by column chromatography. The product was recrystallized from EtOH. The pure products were collected in 82-92% yields. Results: In continuation of our ongoing studies to synthesize heterocyclic and pharmaceutical compounds under mild and practical protocols, we wish to report herein our experimental results on the ultrasound promoted synthesis of 2-pyrazolo-3-phenyl-1,3-thiazolidine-4-ones using various synthesized pyrazolecarbaldehydes, anilines and thioglycolic acid at room temperature. The results illustrated that ionic liquid DSDABCOC certainly improved the yield of the products and reduced the reaction time. Conclusion: In conclusion, we have developed an efficient and simple protocol for the synthesis of novel pyrazolo-1,3-thiazolidine-4-ones using DSDABCOC as an ionic liquid. The easy workup together with the use of inexpensive, reusable and eco-friendly ionic liquid is the notable feature of this novel procedure. To the best of our knowledge, this is the first report of the synthesis of a new library of 1,3-thiazolidine-4-ones bearing a pyrazolyl moiety that enhances the biological activity under solvent-free conditions.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less