Combinatorial Chemistry & High Throughput Screening - Volume 12, Issue 7, 2009
Volume 12, Issue 7, 2009
-
-
High Throughput Cell-Based Screening of Biodegradable Polyanhydride Libraries
A parallel screening method has been developed to rapidly evaluate discrete library substrates of biomaterials using cell-based assays. The biomaterials used in these studies were surface-erodible polyanhydrides based on sebacic acid (SA), 1,6-bis(p-carboxyphenoxy)hexane (CPH), and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) that have been previously studied as carriers for drugs, proteins, and vaccines. Linearly varying compositional libraries of 25 different polyanhydride random copolymers (based on CPH:SA and CPTEG:CPH) were designed, fabricated, and synthesized using discrete (organic solvent-resistant) multi-sample substrates created using a novel rapid prototyping method. The combinatorial libraries were characterized at high throughput using infrared microscopy and validated using 1H NMR and size exclusion chromatography. The discrete libraries were rapidly screened for biocompatibility using standard SP2/0 myeloma, CHO and L929 fibroblasts, and J774 macrophage cell lines. At a concentration of 2.8 mg/mL, there was no appreciable cytotoxic effect on any of the four cell lines evaluated by any of the CPH:SA or CPTEG:CPH compositions. Furthermore, the activation of J774 macrophages was evaluated by incubating the cells with the polyanhydride libraries and quantifying the secreted cytokines (IL-6, IL-10, IL-12, and TNFα). The results indicated that copolymer compositions containing at least 50% CPH induced elevated amounts of TNFα. In summary, the results indicated that the methodologies described herein are amenable to the high throughput analysis of synthesized biomaterials and will facilitate the rapid and rational design of materials for use in biomedical applications.
-
-
-
High-Content Profiling of Cell Responsiveness to Graded Substrates Based on Combinatorially Variant Polymers
We have developed a novel approach combining high information and high throughput analysis to characterize cell adhesive responses to biomaterial substrates possessing gradients in surface topography. These gradients were fabricated by subjecting thin film blends of tyrosine-derived polycarbonates, i.e. poly(DTE carbonate) and poly(DTO carbonate) to a gradient temperature annealing protocol. Saos-2 cells engineered with a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on the gradient substrates to assess the effects of nanoscale surface topology and roughness that arise during the phase separation process on cell attachment and adhesion strength. The high throughput imaging approach allowed us to rapidly identify the “global” and “high content” structure-property relationships between cell adhesion and biomaterial properties such as polymer chemistry and topography. This study found that cell attachment and spreading increased monotonically with DTE content and were significantly elevated at the position with intermediate regions corresponding to the highest “gradient” of surface roughness, while GFP-f farnesylation intensity descriptors were sensitively altered by surface roughness, even in cells with comparable levels of spreading.
-
-
-
Magnetically Induced Protein Gradients on Electrospun Nanofibers
Authors: Chandra M. Valmikinathan, Junping Wang, Sergio Smiriglio, Neha G. Golwala and Xiaojun YuPeripheral nerve regeneration can be significantly enhanced by the distribution of the extracellular matrix (ECM) proteins at an increasing concentration along the length of a scaffold. In this study, we have created a gradient of an extracellular matrix protein, laminin, on nanofibrous scaffolds using an external magnetic field. The laminin was crosslinked to ferritin, a biocompatible protein with functional amino and carboxylic acid groups on the surface and a magnetically inducible iron core. The presence of laminin gradients on the scaffolds was demonstrated through immunofluorescent staining with antibodies against laminin. When culturing Schwann cells on the nanofibrous scaffolds, the number of cells increased along the gradients with increasing laminin concentrations. The method developed in this study allows for precise control over the gradient formation in terms of distances and concentrations and thus provides a platform for high throughput screening of cell materials interactions. The nanofibrous scaffolds with laminin gradients can be potentially used in neural tissue engineering.
-
-
-
Novel High Throughput Polymer Biocompatibility Screening Designed for SAR (Structure-Activity Relationship): Application for Evaluating Polymer Coatings for Cardiovascular Drug-Eluting Stents
The development of stents has been a major advancement over balloon angioplasty, improving vessel revascularization in obstructive coronary artery disease. The development of drug-eluting stents (DES) was the next breakthrough, designed to prevent the development of neointimal hyperplasia (restenosis) following percutaneous coronary interventions (PCI). Several DES are currently in various stages of clinical development; these DES use different stent platforms, different antiproliferative drugs and different polymeric coatings that carry the drugs and control their delivery kinetics. Following DES implantation, when the entire drug is released, the polymeric coating is still retained on the stent and can influence subsequent tissue response and vascular healing. Therefore, the biocompatibility of the polymeric coatings is an important component of DES safety and needs to be thoroughly evaluated. Here we describe the development of a high throughput screening platform for the evaluation of polymer biocompatibility, assaying whether a polymeric coating triggers inflammation in vascular cells. The data generated by these assays provides a structure-activity relationship (SAR) that can guide polymer chemists in polymer design. We have also applied this methodology to evaluate the components of a novel polymer system (BioLinx polymer system) designed in-house. In addition, we assayed other polymeric coatings similar to those currently used on various DES. The results of this evaluation reveal a remarkable correlation between polymer hydrophobicity and its ability to provoke inflammatory response.
-
-
-
Meet the Guest Editor
More LessDr. Simon earned a B.S. in Biology from Bucknell University in 1992 and a Ph.D. in Biochemistry from University of Virginia in 1999. He studied signal transduction during human platelet aggregation for his thesis. He did a post-doctoral fellowship in the Polymers Division at the NIST and became a staff scientist at NIST in 2003. He currently leads a project entitled “3D Tissue Scaffolds” and his research is focused on developing methods for characterizing cell-material interactions. He has developed combinatorial methods for screening cell-material interactions where the material is presented to the cell in a 3D format. Much previous work has centered on using 2D material surfaces for screening cell response to materials yet cells exist in a 3D matrix in vivo, cells in vitro behave more physiologically when cultured in 3D and biomaterials are commonly used in a 3D scaffold format for tissue engineering applications. Thus, Dr. Simon's group has developed several platforms for fabricating combinatorial libraries of polymer scaffolds with varied material properties. These scaffold libraries can be used to screen material property phase space to identify scaffold designs that optimize tissue generation.
-
-
-
Orthogonal, Spectroscopic High Throughput Screening of Laccase-Catalyzed p-Cresol Oxidation
Authors: Komandoor E. Achyuthan, Jaime L. McClain and Dominic RajThere is considerable interest in the oxidative fate of phenols such as p-cresol as environmental pollutants and uremic toxins. We supply a menu of spectroscopic options for the high throughput screening of laccase oxidation of pcresol through multiple modes of detection. Laccase activity was monitored kinetically at pH 4.5 by absorption changes at 250 nm, 274 nm or 297 nm, and in endpoint mode by the bathochromic shift in absorption to 326 nm in 50 mM NaOH. Laccase oxidation of p-cresol was also detected by product fluorescence at 425 nm after excitation at 262 nm or 322 nm in 50 mM NaOH. We optimized the kinetic parameters for p-cresol oxidation (pH optimum 4.5-5.1; 37oC; Km = 2.2 mM) resulting in laccase limits of detection and quantitation of 25 pg/μL and 75 pg/μL, respectively (∼360 pM; 25 ppb). The sensitivity for p-cresol was similar to previously reported values. The small (∼20%) decrease in signal strength after six cycles of excitation over a 3 h period was attributed to photobleaching or photodegradation of the emitter and not due to fluorescence decay (photoinstability). Halide inhibition was characteristic of laccases (IC50 = 25 mM NaCl). A unique advantage of our assay is that laccase catalysis could be interrogated using multi-mode absorption or fluorescence under acidic or basic conditions, in real time or endpoint modes. Orthogonal interrogation facilitates ratiometric analysis enabling high specificity while minimizing interferences during compound library screening. The phenolic alcohol pcresol may be a model for monolignol oxidation. Our studies might find applications in biofuels, to triage dialysis patients, or for the environmental bioremediation of phenols.
-
-
-
Fingerprinting Polymer Microarrays
Authors: Guilhem Tourniaire, Juan J. Diaz-Mochon and Mark BradleyThe incubation of “polymer microarrays” with labelled proteins and carbohydrates demonstrated polymer selective binding, giving an approach to cellular fingerprinting and offering a possible alternative to current arraying platforms for partitioning and analysis of complex cellular components.
-
-
-
Novel MK2 Inhibitors by Fragment Screening
Inhibitors of MAPKAP kinase 2 (MK2) are expected to attenuate the p38α signal transduction pathway in macrophages in a similar way to p38α inhibitors and to have a lower propensity for toxic side effects that have slowed the clinical development of the latter. Therefore, novel MK2 inhibitors may find therapeutic application in acute and chronic, TNFα-mediated inflammatory conditions like rheumatoid arthritis and others. Herein we have applied fragment screening, using physiologically relevant bioassays and fragment binding mode mapping by protein-observed NMR spectroscopy to the discovery of novel efficient chemical starting points for MK2
-
-
-
Synthesis and Some Reactions of Dibutyltin (S)- and (R)-Camphorsulfonyl Hydrides
Authors: Wojciech J. Kinart, Cezary M. Kinart, Monika Kozak, Andrzej Kinart, Marcin Sendecki and Piotr MatczakThe synthesis and physical properties of dibutyltin (S)-camphorsulfonyl hydride (1) and dibutyltin (R)- camphorsulfonyl hydride (2), and diphenyltin (S)-camphorsulfonyl hydride (3) as well as that of their organotin precursors are described. Their reactivity with different amines as triethylamine, morpholine and pyridine has been compared with other mixed hydrides as dibutyltin chloride hydride, dibutyltin acetate hydride and dibutyltin dihydride. It has been studied also the possibility of using of dibutyltin (R)- or (S)-camphorsulfonyl hydrides for the stereoselective reduction of different ketones as acetophenone, menthon, camphor and cyclopropyl-(4-metoxyphenyl)-methanone. The reduction of acetophenone with studied camphorsulfonyl hydrides carried out in benzene at room temperature afforded 1- phenylethanol with relatively low enantioselectivity. Addition of 10 equiv. of MnCl2 .4H2O or ZnCl2 to the reduction mixture involving dibutyltin (S)-camphorsulfonyl hydride (1) and acetophenone and carried out in methanol and tetrahydrofuran, respectively, resulted in remarkable increase in enantioselectivity. The comparative kinetic studies of reduction of acetophenone by different hydrides proved that dibutyltin camphorsulfonyl hydride is significantly more reactive in comparison with dibutyltin chloro hydride and dibutyltin acetate hydride. Analogous results have been obtained from kinetic studies for different tin hydrides with chosen amines. The outcome of these studies supported by theoretical calculations led to the conclusion that the order of reactivity of the studied hydrides correlates with the rate of their homolytic decomposition at room temperature.
-
-
-
Rapid Determination of Tartaric Acid in Wines
A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flowinjection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 μg mL-1 tartaric acid, with a molar extinction coefficient of 450 L mg-1 cm-1 and ± 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of tartaric acid (TA) in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.
-
-
-
Combinatorial Chemistry on Solid Support in the Search for Central Nervous System Agents
Authors: Pawel Zajdel, Maciej Pawlowski, Jean Martinez and Gilles SubraThe advent of combinatorial chemistry was one of the most important developments, that has significantly contributed to the drug discovery process. Within just a few years, its initial concept aimed at production of libraries containing huge number of compounds (thousands to millions), so called screening libraries, has shifted towards preparation of small and medium-sized rationally designed libraries. When applicable, the use of solid supports for the generation of libraries has been a real breakthrough in enhancing productivity. With a limited amount of resin and simple manual workups, the split/mix procedure may generate thousands of bead-tethered compounds. Beads can be chemically or physically encoded to facilitate the identification of a hit after the biological assay. Compartmentalization of solid supports using small reactors like teabags, kans or pellicular discrete supports like Lanterns resulted in powerful sort and combine technologies, relying on codes ‘written’ on the reactor, and thus reducing the need for automation and improving the number of compounds synthesized. These methods of solid-phase combinatorial chemistry have been recently supported by introduction of solid-supported reagents and scavenger resins. The first part of this review discusses the general premises of combinatorial chemistry and some methods used in the design of primary and focused combinatorial libraries. The aim of the second part is to present combinatorial chemistry methodologies aimed at discovering bioactive compounds acting on diverse GPCR involved in central nervous system disorders.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less