Combinatorial Chemistry & High Throughput Screening - Volume 11, Issue 1, 2008
Volume 11, Issue 1, 2008
-
-
Development of a Screening Assay for Ligands to the Estrogen Receptor Based on Magnetic Microparticles and LC-MS
Authors: Richard B. van Breemen and Yongsoo ChoiA high throughput screening assay for the identification of ligands to pharmacologically significant receptors was developed based on magnetic particles containing immobilized receptors followed by liquid chromatography-mass spectrometry (LC-MS). This assay is suitable for the screening of complex mixtures such as botanical extracts. For proofof- principle, estrogen receptor-α (ER-α) and ER-β were immobilized on magnetic particles functionalized with aldehyde or carboxylic acid groups. Alternatively, biotinylated ER was immobilized onto streptavidin-derivatized magnetic particles. The ER that was immobilized using the streptavidin-biotin chemistry showed higher activity than that immobilized on aldehyde or carboxylic acid functionalized magnetic particles. Immobilized ER was incubated with extracts of Trifolium pratense L. (red clover) or Humulus lupulus L. (hops). As a control for non-specific binding, each botanical extract was incubated with magnetic particles containing no ER. After magnetic separation of the particles containing bound ligands from the unbound components in the extract, the particles were washed, ligands were released using methanol, and then the ligands were identified using LC-MS. The estrogens genistein and daidzein were identified in the red clover extract, and the estrogen 8-prenylnaringenin was identified in the hop extract. These screening results are consistent with those obtained using previous screening approaches.
-
-
-
Anti-Cancer Natural Product Library from Traditional Chinese Medicine
Authors: Thomas Efferth and V. B. KonkimallaThe cure rates in cancer chemotherapy are affected by the development of drug resistance and severe side effects. Due to these limitations, there is an urgent need for improved therapeutics. Bioactive compounds from medicinal plants represent a valuable resource for novel anticancer drugs. To gain a systematic approach, we established a library of 531 cytotoxic natural products derived from traditional Chinese medicine. Cellular and pharmacogenomic profiling was performed for the 10 most cytotoxic natural products. One of these compounds, helebrin, was analyzed in more detail. The IC50 values for hellebrin of 60 NCI cell lines were associated with the microarray-based expression of 9,706 genes. By hierarchical cluster analyses, candidate genes were identified which significantly predicted sensitivity or resistance of cell lines to hellebrin.
-
-
-
Post-SELEX Chemical Optimization of a Trypanosome-Specific RNA Aptamer
Authors: H. U. Goringer, Annette Adler, Nicole Forster and Matthias HomannAfrican trypanosomes are the causative agent of sleeping sickness. The therapeutics used to control and treat the disease are very ineffective and thus, the development of improved drugs is urgently needed. Recently, new strategies for the design of novel trypanocidals have been put forward. Among them are techniques that rely on parasite-specific RNA aptamers. One approach involves the aptamer-directed transport of lytic compounds to the lysosome of the parasite. The aptamer has been termed 2-16 RNA and here we report the optimization of the RNA for its applications in vivo. To convert aptamer 2-16 into a serum-stable reagent 2’-deoxy-2’-F- and/or 2’-deoxy-2’-NH2-uridine- and cytidine-substituted RNAs were generated. While 2’-NH2-dC/dU-modified RNAs were RNase-resistant, they were functionally inactive. By contrast, 2’-F-dC/dU-substituted 2-16 RNA retained its ability to bind to live trypanosomes (Kd=45 nM) and was routed to the lysosome identically to unmodified RNA. 2’-F-dC/dU-substituted 2-16 RNA is thermostable (Tm=75°C) and has a serum half-life of 3.4 days. Furthermore, aptamer 2-16 was site-specifically PEGylated to increase its serum retention time. Conjugation with PEG polymers ≤10 kDa only marginally impacted the binding characteristics of the RNA, while the addition of higher molecular mass PEG molecules resulted in non-functional aptamers. Together, the data provide optimized conjugation chemistries for the large-scale production of substituted aptamer 2-16 preparations with improved in vivo functionality.
-
-
-
A High-Complexity, Multiplexed Solution-Phase Assay for Profiling Protease Activity on Microarrays
We have developed a miniaturized and multiplexed solution assay for the measurement of protease activity in complex samples. This technology can accelerate research in functional proteomics and enable biologists to carry out multiplexed protease inhibitor screens on a large scale. The assay readout is based on Illumina's universal Sentrix® BeadArrays. The peptide sequences that serve as protease substrates are conjugated to oligonucleotide sequences complementary to the oligo tags on randomly assembled and decoded bead arrays. The peptide portion is C-terminally labeled with a biotin residue and contains a sequence of five histidine residues on the amino terminus. The unique oligonucleotide part of each oligonucleotide-peptide conjugate is attached to amino terminus of the peptide sequence. Upon protease cleavage, the biotin residue is cleaved from the oligonucleotide-peptide conjugate. Following the reaction, all biotin-containing species are captured and removed by incubation with streptavidin beads. The cleaved conjugates that remain in solution are captured by hybridization of their oligo sequence to Sentrix BeadArrays and detected using a labeled antibody against pentahistidine tag of the conjugate or by an antibody sandwich assay. We have generated multiple sets of oligonucleotide tagged peptide substrates of varying complexity (100 to 1000 substrates in a mixture) and show that the response of individual substrate is independent of the complexity of the mixture. Our initial results demonstrate the feasibility of assaying proteases in a multiplexed environment with high sensitivity.
-
-
-
The Combinatorial Synthesis of Organophosphorus Compounds
Authors: Stephen D. Lindell, Bernhard Lesch and Douglas W. ThomsonThe primary literature concerning the combinatorial synthesis of organophosphorus compounds is reviewed and discussed. The subject matter is divided into three main sections describing the solid phase, solution phase and solvent- free synthesis of phosphorus containing organic molecules. The review covers the synthesis of compounds in which the final products contain phosphorus-carbon bonds, primarily phosphonates, phosphinates, phosphine oxides and phosphines.
-
-
-
Targeted Therapy of the Insulin-Like Growth Factor-1 Receptor in Cancer
Authors: Keren Paz and Yaron R. HadariRecently, significant progress has been made towards understanding the pathogenesis of cancer from the molecular standpoint. To this end, a growing number of approaches are being exploited for the identification and validation of new therapeutic targets suitable for potent and specific intervention. The type 1 insulin-like growth factor receptor (IGF-1R) system has recently become the focus of major attention in the arena of cancer research. The involvement of the receptor and its downstream signaling cascades in the carcinogenesis process makes this system an excellent target for potential cancer therapy. Indeed, advances in the understanding of the molecular mechanisms behind IGF-1R activation have led to the discovery of agents designed selectively for targeting IGF-1R. The potential application of these inhibitors is currently under intense clinical investigation. This review describes the biology of IGF-1R particularly from a cancer perspective. The attempts to develop effective IGF-1R antagonists are discussed comprehensively with special emphasis on antibodies and small tyrosine kinase inhibitors.
-
-
-
A Chemical Genetics Approach for Specific Differentiation of Stem Cells to Somatic Cells: A New Promising Therapeutical Approach
Cell replacement therapy of severe degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease through transplantation of somatic cells generated from embryonic stem (ES) cells is currently receiving considerable attention for the therapeutic applications. ES cells harvested from the inner cell mass (ICM) of the early embryo, can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells thereby providing an unlimited renewable source of somatic cells. In this context, identifying soluble factors, in particular chemically synthesized small molecules, and signal cascades involved in specific differentiation processes toward a defined tissue specific cell type are crucial for optimizing the generation of somatic cells in vitro for therapeutic approaches. However, experimental models are required allowing rapid and “easy-to-handle” parallel screening of chemical libraries to achieve this goal. Recently, the forward chemical genetic screening strategy has been postulated to screen small molecules in cellular systems for a specific desired phenotypic effect. The current review is focused on the progress of ES cell research in the context of the chemical genetics to identify small molecules promoting specific differentiation of ES cells to desired cell phenotype. Chemical genetics in the context of the cell ES-based cell replacement therapy remains a challenge for the near future for several scientific fields including chemistry, molecular biology, medicinal physics and robotic technologies.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less