Skip to content
2000
image of CDK1 Signaling in Cancer Treatment: Advances in AI-based Strategies and Tools for New Cancer Drug Discovery

Abstract

Cyclin-Dependent Kinases (CDKs) are proteins that help control the cell cycle. They are considered potential targets for cancer treatment because they are often found at higher levels in cancer tissues than in normal tissues, and their presence is linked to survival rates in many cancer types. Cyclin-Dependent Kinase 1 (CDK1) is crucial for cell division and growth in cancer, as it significantly influences cell cycle progression through complexes formed with cyclins. Tumor growth can occur when CDK1 is deregulated, as its activation and phosphorylation of substrates are crucial for tumor development. Various small molecules that inhibit CDK1 have been developed and tested in preclinical studies, and some have progressed to human clinical trials. By inhibiting CDK1 activity, these drugs prevent it from changing other proteins and controlling the growth of cancer cells. Our study uses the STRING database, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology (GO) analysis to reveal that CDK1 interacts with many proteins involved in cancer pathways. However, developing the best CDK1 inhibitors is challenging due to selectivity, potency, and cost, which are influenced by CDK1's structure and interactions with other proteins. This review explores the structure, function, regulation, mechanisms, and expression of CDK1, its crystal structure with various ligands, interactions with other proteins, and potential applications of CDK1 inhibitors. Future research, such as combination medicines, CRISPR, nanotechnology, and AI-driven methods and tools, should highlight their practical applications and provide a guide for efficient CDK1 discovery and drug development. Thus, this review emphasizes the significance of CDK1 targeting in cancer therapy, the difficulties in identifying potent inhibitors, and the ongoing research to enhance cancer treatment results by focusing on CDK1.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073426310251010113112
2026-01-12
2026-01-29
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073426310251010113112/BMS-CCHTS-2025-HT69-5938-14.html?itemId=/content/journals/cchts/10.2174/0113862073426310251010113112&mimeType=html&fmt=ahah

References

  1. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 15 6 122 10.1186/gb4184 25180339
    [Google Scholar]
  2. Łukasik P. Załuski M. Gutowska I. Cyclin-dependent kinases (CDK) and their role in diseases development–review. Int. J. Mol. Sci. 2021 22 6 2935 10.3390/ijms22062935 33805800
    [Google Scholar]
  3. Porter L.A. Donoghue D.J. Cyclin B1 and CDK1: Nuclear localization and upstream regulators. Prog. Cell. Cycle Res. 2003 5 335 347 14593728
    [Google Scholar]
  4. Massacci G. Perfetto L. Sacco F. The cyclin-dependent kinase 1: More than a cell cycle regulator. Br. J. Cancer 2023 129 11 1707 1716 10.1038/s41416‑023‑02468‑8 37898722
    [Google Scholar]
  5. Enserink J.M. Kolodner R.D. An overview of Cdk1-controlled targets and processes. Cell. Div 2010 5 1 11 10.1186/1747‑1028‑5‑11 20465793
    [Google Scholar]
  6. Ghafouri-Fard S. Khoshbakht T. Hussen B.M. Dong P. Gassler N. Taheri M. Baniahmad A. Dilmaghani N.A. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int. 2022 22 1 325 10.1186/s12935‑022‑02747‑z 36266723
    [Google Scholar]
  7. Wang Q. Bode A.M. Zhang T. Targeting CDK1 in cancer: Mechanisms and implications. NPJ Precis. Oncol. 2023 7 1 58 10.1038/s41698‑023‑00407‑7 37311884
    [Google Scholar]
  8. Łukasik P. Baranowska-Bosiacka I. Kulczycka K. Gutowska I. Inhibitors of cyclin-dependent kinases: Types and their mechanism of action. Int. J. Mol. Sci. 2021 22 6 2806 10.3390/ijms22062806 33802080
    [Google Scholar]
  9. Sofi S. Mehraj U. Qayoom H. Aisha S. Almilaibary A. Alkhanani M. Mir M.A. Targeting cyclin-dependent kinase 1 (CDK1) in cancer: Molecular docking and dynamic simulations of potential CDK1 inhibitors. Med. Oncol. 2022 39 9 133 10.1007/s12032‑022‑01748‑2 35723742
    [Google Scholar]
  10. Vishwakarma K.K. Kolthur-Seetharam U. Venkatramani R. ATP-binding free energy simulations reveal an allosteric link between the enzyme active site and multiple functional protein-protein interaction interfaces in cyclin dependent kinase-1. bioRxiv 2024 10.1101/2024.01.15.575662
    [Google Scholar]
  11. Recabarren R. Osorio E.H. Caballero J. Tuñón I. Alzate-Morales J.H. Mechanistic insights into the phosphoryl transfer reaction in cyclin-dependent kinase 2: A QM/MM study. PLoS One 2019 14 9 e0215793 10.1371/journal.pone.0215793 31483779
    [Google Scholar]
  12. Rath S.L. Senapati S. Molecular basis of differential selectivity of cyclobutyl-substituted imidazole inhibitors against CDKs: insights for rational drug design. PLoS One 2013 8 9 e73836 10.1371/journal.pone.0073836 24058495
    [Google Scholar]
  13. Brown N.R. Korolchuk S. Martin M.P. Stanley W.A. Moukhametzianov R. Noble M.E.M. Endicott J.A. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat. Commun. 2015 6 1 6769 10.1038/ncomms7769 25864384
    [Google Scholar]
  14. Into Evolution S.P.I. Global analysis of cdk1 substrate phosphorylation. J. Biol. Chem. 2005 280 25596
    [Google Scholar]
  15. Miguel R.B. Petersen P.A.D. Gonzales-Zubiate F.A. Oliveira C.C. Kumar N. do Nascimento R.R. Petrilli H.M. da Costa Ferreira A.M. Inhibition of cyclin-dependent kinase CDK1 by oxindolimine ligands and corresponding copper and zinc complexes. J. Biol. Inorg. Chem. 2015 20 7 1205 1217 10.1007/s00775‑015‑1300‑4 26411703
    [Google Scholar]
  16. Kachroo A.H. Vandeloo M. Greco B.M. Abdullah M. Humanized yeast to model human biology, disease and evolution. Dis. Model. Mech. 2022 15 6 dmm049309 10.1242/dmm.049309 35661208
    [Google Scholar]
  17. Fisher R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell. Sci. 2005 118 22 5171 5180 10.1242/jcs.02718 16280550
    [Google Scholar]
  18. Lemonnier T. Dupré A. Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div. 2020 15 1 9 10.1186/s13008‑020‑00065‑2 32508972
    [Google Scholar]
  19. Fourest-Lieuvin A. Peris L. Gache V. Garcia-Saez I. Juillan-Binard C. Lantez V. Job D. Microtubule regulation in mitosis: Tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell. 2006 17 3 1041 1050 10.1091/mbc.e05‑07‑0621 16371510
    [Google Scholar]
  20. Li Z. Tian X. Ji X. Wang J. Chen H. Wang D. Zhang X. ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle. PLoS. Biol. 2020 18 6 e3000288 10.1371/journal.pbio.3000288 32516310
    [Google Scholar]
  21. Ravindran Menon D. Luo Y. Arcaroli J.J. Liu S. KrishnanKutty, L.N.; Osborne, D.G.; Li, Y.; Samson, J.M.; Bagby, S.; Tan, A.C.; Robinson, W.A.; Messersmith, W.A.; Fujita, M. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma. Cancer Res. 2018 78 23 6561 6574 10.1158/0008‑5472.CAN‑18‑0330 30297536
    [Google Scholar]
  22. Preisinger C. Körner R. Wind M. Lehmann W.D. Kopajtich R. Barr F.A. Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J. 2005 24 4 753 765 10.1038/sj.emboj.7600569 15678101
    [Google Scholar]
  23. Liu X. Wu H. Liu Z. An integrative human pan-cancer analysis of cyclin-dependent kinase 1 (CDK1). Cancers 2022 14 11 2658 10.3390/cancers14112658 35681641
    [Google Scholar]
  24. Mir M.A. Haq B.U. CDK1 dysregulation in breast cancer. Therapeutic potential of cell cycle kinases in breast cancer. Mir M. Singapore Springer 2023 195 210 10.1007/978‑981‑19‑8911‑7_9
    [Google Scholar]
  25. Han Z. Jia Q. Zhang J. Chen M. Wang L. Tong K. He W. Zhang Y. Zhu W. Qin J. Wang T. Liu T. Ma Y. Chen Y. Zha S. Zhang C. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J. Exp. Clin. Cancer Res. 2023 42 1 228 10.1186/s13046‑023‑02781‑3 37667382
    [Google Scholar]
  26. Karlsson C. Katich S. Hagting A. Hoffmann I. Pines J. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J. Cell. Biol. 1999 146 3 573 584 10.1083/jcb.146.3.573 10444066
    [Google Scholar]
  27. Bukhari A.B. Chan G.K. Gamper A.M. Targeting the DNA damage response for cancer therapy by inhibiting the kinase Wee1. Front. Oncol. 2022 12 828684 10.3389/fonc.2022.828684 35251998
    [Google Scholar]
  28. Zitouni S. Francia M.E. Leal F. Montenegro Gouveia S. Nabais C. Duarte P. Gilberto S. Brito D. Moyer T. Kandels-Lewis S. Ohta M. Kitagawa D. Holland A.J. Karsenti E. Lorca T. Lince-Faria M. Bettencourt-Dias M. CDK1 prevents unscheduled PLK4-STIL complex assembly in centriole biogenesis. Curr. Biol. 2016 26 9 1127 1137 10.1016/j.cub.2016.03.055 27112295
    [Google Scholar]
  29. Saavedra K. Valbuena J. Olivares W. Marchant M.J. Rodríguez A. Torres-Estay V. Carrasco-Avino G. Guzmán L. Aguayo F. Roa J.C. Corvalán A.H. Loss of expression of reprimo, a p53-induced cell cycle arrest gene, correlates with invasive stage of tumor progression and p73 expression in gastric cancer. PLoS One 2015 10 5 e0125834 10.1371/journal.pone.0125834 25954972
    [Google Scholar]
  30. Wang H. Dong W. Wang L. Expression profile and potential functional differentiation of the Speedy/RINGO family in mice. Gene 2019 683 80 86 10.1016/j.gene.2018.10.029 30316922
    [Google Scholar]
  31. Marjanović M. Sánchez-Huertas C. Terré B. Gómez R. Scheel J.F. Pacheco S. Knobel P.A. Martínez-Marchal A. Aivio S. Palenzuela L. Wolfrum U. McKinnon P.J. Suja J.A. Roig I. Costanzo V. Lüders J. Stracker T.H. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nat. Commun 2015 6 1 7676 10.1038/ncomms8676 26158450
    [Google Scholar]
  32. Hégarat N. Vesely C. Vinod P.K. Ocasio C. Peter N. Gannon J. Oliver A.W. Novák B. Hochegger H. PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit. PLoS Genet. 2014 10 1 e1004004 10.1371/journal.pgen.1004004 24391510
    [Google Scholar]
  33. Schmit F. Cremer S. Gaubatz S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence‐specific manner. FEBS J. 2009 276 19 5703 5716 10.1111/j.1742‑4658.2009.07261.x 19725879
    [Google Scholar]
  34. Rogers S. Fey D. McCloy R.A. Parker B.L. Mitchell N.J. Payne R.J. Daly R.J. James D.E. Caldon C.E. Watkins D.N. Croucher D.R. Burgess A. PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells. J. Cell Sci. 2016 129 7 1340 1354 10.1242/jcs.179754 26872783
    [Google Scholar]
  35. Pecoraro C. The Role of speedy/ringo in triple negative breast cancer metastasis University of Windsor 2024
    [Google Scholar]
  36. Counts S.E. Mufson E.J. Regulator of cell cycle (RGCC) expression during the progression of Alzheimer’s disease. Cell Transplant. 2017 26 4 693 702 10.3727/096368916X694184 27938491
    [Google Scholar]
  37. Hung K.S. Hsiao C.C. Pai T.W. Hu C.H. Tzou W.S. Wang W.D. Chen Y.R. Functional enrichment analysis based on long noncoding RNA associations. BMC Syst. Biol. 2018 12 Suppl. 4 45 10.1186/s12918‑018‑0571‑0 29745842
    [Google Scholar]
  38. Doncheva N.T. Morris J.H. Gorodkin J. Jensen L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019 18 2 623 632 10.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  39. Bader G.D. Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003 4 1 2 10.1186/1471‑2105‑4‑2 12525261
    [Google Scholar]
  40. Yu B. Dalton W.B. Yang V.W. CDK1 regulates mediator of DNA damage checkpoint 1 during mitotic DNA damage. Cancer Res. 2012 72 21 5448 5453 10.1158/0008‑5472.CAN‑12‑2354 22962268
    [Google Scholar]
  41. Zhong Y. Yang J. Xu W.W. Wang Y. Zheng C-C. Li B. He Q-Y. KCTD12 promotes tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition. Oncogene 2017 36 44 6177 6189 10.1038/onc.2017.287 28869606
    [Google Scholar]
  42. Yamakawa H. Ebara S. Yoshida M. Yamamoto K. Hayashi K. Shimokawa K. Araki S. Tauchi H. Morishita D. Phosphorylation dynamics and kinase interaction in mRNA transcription-associated kinases: autophosphorylation of CDK12 and its modulation by CDK7 and CDK9. BPB Reports 2024 7 5 170 177 10.1248/bpbreports.7.5_170
    [Google Scholar]
  43. Fei Q. Zou Z. Roundtree I.A. Sun H.L. He C. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biol. 2020 18 4 e3000664 10.1371/journal.pbio.3000664 32267835
    [Google Scholar]
  44. Cicenas J. Valius M. The CDK inhibitors in cancer research and therapy. J. Cancer Res. Clin. Oncol. 2011 137 10 1409 1418 10.1007/s00432‑011‑1039‑4 21877198
    [Google Scholar]
  45. Liu K. Zheng M. Lu R. Du J. Zhao Q. Li Z. Li Y. Zhang S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell. Int. 2020 20 1 213 10.1186/s12935‑020‑01304‑w 32518522
    [Google Scholar]
  46. Liu K. Zheng M. Zhao Q. Zhang K. Li Z. Fu F. Zhang H. Du J. Li Y. Zhang S. Different p53 genotypes regulating different phosphorylation sites and subcellular location of CDC25C associated with the formation of polyploid giant cancer cells. J. Exp. Clin. Cancer Res. 2020 39 1 83 10.1186/s13046‑024‑03155‑z 32393310
    [Google Scholar]
  47. Huang Y. Li D. Wang L. Su X. Tang X. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle. J. Transl. Med. 2022 20 1 78 10.1186/s12967‑022‑03277‑y 35123514
    [Google Scholar]
  48. Yang Y. Xue K. Li Z. Zheng W. Dong W. Song J. Sun S. Ma T. Li W. c-Myc regulates the CDK1/cyclin B1 dependent G2/M cell cycle progression by histone H4 acetylation in Raji cells. Int. J. Mol. Med. 2018 41 6 3366 3378 10.3892/ijmm.2018.3519 29512702
    [Google Scholar]
  49. Kang J. Sergio C.M. Sutherland R.L. Musgrove E.A. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer 2014 14 1 32 10.1186/1471‑2407‑14‑32 24444383
    [Google Scholar]
  50. Talatam A. Reddy P.K. Motohashi N. Vanam A. Gollapudi R. Targeting overexpressed cyclin dependent kinase 1 (CDK1) in human cancers: Kamalachalcone A emerged as potential inhibitor of CDK1 kinase through in silico docking study. Oncogen 2023 6 1 25 10.35702/onc.10025
    [Google Scholar]
  51. Goga A. Yang D. Tward A.D. Morgan D.O. Bishop J.M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat. Med. 2007 13 7 820 827 10.1038/nm1606 17589519
    [Google Scholar]
  52. Mir M. Khan S. Aisha S. Therapeutic potential of cell cycle kinases in breast cancer. Mir M. Singapore Springer 2023 10.1007/978‑981‑19‑8911‑7
    [Google Scholar]
  53. Zhang C. Elkahloun A.G. Robertson M. Gills J.J. Tsurutani J. Shih J.H. Fukuoka J. Hollander M.C. Harris C.C. Travis W.D. Jen J. Dennis P.A. Loss of cytoplasmic CDK1 predicts poor survival in human lung cancer and confers chemotherapeutic resistance. PLoS One 2011 6 8 e23849 10.1371/journal.pone.0023849 21887332
    [Google Scholar]
  54. Radomska H.S. Alberich-Jordà M. Will B. Gonzalez D. Delwel R. Tenen D.G. Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPα. J. Clin. Invest. 2012 122 8 2955 2966 10.1172/JCI43354 22797303
    [Google Scholar]
  55. Thoma O.M. Neurath M.F. Waldner M.J. Cyclin-dependent kinase inhibitors and their therapeutic potential in colorectal cancer treatment. Front Pharmacol. 2021 12 757120 10.3389/fphar.2021.757120 35002699
    [Google Scholar]
  56. Serpico A.F. Grieco D. Recent advances in understanding the role of CDK1 in the Spindle Assembly Checkpoint. F1000 Res. 2020 9 57 10.12688/f1000research.21185.1 32047615
    [Google Scholar]
  57. Androic I. Krämer A. Yan R. Rödel F. Gätje R. Kaufmann M. Strebhardt K. Yuan J. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer 2008 8 1 391 10.1186/1471‑2407‑8‑391 19113992
    [Google Scholar]
  58. Karn V. Sandhya S. Hsu W. Parashar D. Singh H.N. Jha N.K. Gupta S. Dubey N.K. Kumar S. CRISPR/Cas9 system in breast cancer therapy: Advancement, limitations and future scope. Cancer Cell Int. 2022 22 1 234 10.1186/s12935‑022‑02654‑3 35879772
    [Google Scholar]
  59. Ma J. Xue K. Jiang Y. Wang X. He D. Guo P. Down-regulation of SLC14A1 in prostate cancer activates CDK1/CCNB1 and mTOR pathways and promotes tumor progression. Sci. Rep. 2024 14 1 14914 10.1038/s41598‑024‑66020‑1 38942821
    [Google Scholar]
  60. Chen S. Xu Y. Yuan X. Bubley G.J. Balk S.P. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc. Natl. Acad. Sci. USA 2006 103 43 15969 15974 10.1073/pnas.0604193103 17043241
    [Google Scholar]
  61. Voce D.J. Bernal G.M. Cahill K.E. Wu L. Mansour N. Crawley C.D. Campbell P.A.S. Arina A. Weichselbaum R.R. Yamini B. CDK1 is up-regulated by temozolomide in an NF-κB dependent manner in glioblastoma. Sci. Rep 2021 11 1 5665 10.1038/s41598‑021‑84912‑4 33707466
    [Google Scholar]
  62. Han K. Chen Y. Sun X. Wen L. Wu Y. Chen S. Wei L. Yu J. Zeng T. Jiang L. Tan L. Combining serum CDK1 with tumor markers for the diagnosis of small cell lung cancer. Clin. Transl. Oncol. 2024 27 5 2005 2013 10.1007/s12094‑024‑03722‑y 39397200
    [Google Scholar]
  63. Du Q. Liu W. Mei T. Wang J. Qin T. Huang D. Prognostic and immunological characteristics of CDK1 in lung adenocarcinoma: A systematic analysis. Front. Oncol. 2023 13 1128443 10.3389/fonc.2023.1128443 36950551
    [Google Scholar]
  64. Bencivenga D. Stampone E. Azhar J. Parente D. Ali W. Del Vecchio V. Della Ragione F. Borriello A. p27Kip1 and Tumors: Characterization of CDKN1B Variants Identified in MEN4 and Breast Cancer. Cells 2025 14 3 188 10.3390/cells14030188 39936980
    [Google Scholar]
  65. Wijnen R. Pecoraro C. Carbone D. Fiuji H. Avan A. Peters G.J. Giovannetti E. Diana P. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers 2021 13 17 4389 10.3390/cancers13174389 34503199
    [Google Scholar]
  66. Dhir T. Schultz C.W. Jain A. Brown S.Z. Haber A. Goetz A. Xi C. Su G.H. Xu L. Posey J. Jiang W. Yeo C.J. Golan T. Pishvaian M.J. Brody J.R. Abemaciclib is effective against pancreatic cancer cells and synergizes with HuR and YAP1 inhibition. Mol. Cancer Res. 2019 17 10 2029 2041 10.1158/1541‑7786.MCR‑19‑0589 31383722
    [Google Scholar]
  67. Johnson N. Li Y.C. Walton Z.E. Cheng K.A. Li D. Rodig S.J. Moreau L.A. Unitt C. Bronson R.T. Thomas H.D. Newell D.R. D’Andrea A.D. Curtin N.J. Wong K.K. Shapiro G.I. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat. Med. 2011 17 7 875 882 10.1038/nm.2377 21706030
    [Google Scholar]
  68. Coxon C.R. Anscombe E. Harnor S.J. Martin M.P. Carbain B. Golding B.T. Hardcastle I.R. Harlow L.K. Korolchuk S. Matheson C.J. Newell D.R. Noble M.E.M. Sivaprakasam M. Tudhope S.J. Turner D.M. Wang L.Z. Wedge S.R. Wong C. Griffin R.J. Endicott J.A. Cano C. Cyclin-dependent kinase (CDK) inhibitors: Structure–activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines. J. Med. Chem. 2017 60 5 1746 1767 10.1021/acs.jmedchem.6b01254 28005359
    [Google Scholar]
  69. Wood D.J. Korolchuk S. Tatum N.J. Wang L.Z. Endicott J.A. Noble M.E. Martin M.P. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell. Chem. Biol. 2019 26 1 121 130 10.1016/j.chembiol.2018.10.015 30472117
    [Google Scholar]
  70. Korolchuk S.M. Structural and functional characterisation of cyclin dependent kinase 1 containing complexes Newcastle University 2018
    [Google Scholar]
  71. Holder J. Mohammed S. Barr F.A. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020 9 e59885 10.7554/eLife.59885 32869743
    [Google Scholar]
  72. Yu J. Raia P. Ghent C.M. Raisch T. Sadian Y. Cavadini S. Sabale P.M. Barford D. Raunser S. Morgan D.O. Boland A. Structural basis of human separase regulation by securin and CDK1–cyclin B1. Nature 2021 596 7870 138 142 10.1038/s41586‑021‑03764‑0 34290405
    [Google Scholar]
  73. Gough R.E. Jones M.C. Zacharchenko T. Le S. Yu M. Jacquemet G. Muench S.P. Yan J. Humphries J.D. Jørgensen C. Humphries M.J. Goult B.T. Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1. J. Biol. Chem. 2021 297 1 100837 10.1016/j.jbc.2021.100837 34118235
    [Google Scholar]
  74. Wood D.J. Endicott J.A. Structural insights into the functional diversity of the CDK–cyclin family. Open Biol. 2018 8 9 180112 10.1098/rsob.180112 30185601
    [Google Scholar]
  75. Brown N.R. Noble M.E.M. Endicott J.A. Johnson L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell. Biol. 1999 1 7 438 443 10.1038/15674 10559988
    [Google Scholar]
  76. Aaltonen K. Amini R-M. Heikkilä P. Aittomäki K. Tamminen A. Nevanlinna H. Blomqvist C. High cyclin B1 expression is associated with poor survival in breast cancer. Br. J. Cancer 2009 100 7 1055 1060 10.1038/sj.bjc.6604874 19293801
    [Google Scholar]
  77. Hope I. Endicott J.A. Watt J.E. Emerging approaches to CDK inhibitor development, a structural perspective. RSC. Chem. Biol. 2023 4 2 146 164 10.1039/D2CB00201A 36794018
    [Google Scholar]
  78. Garcia-Sampedro A. Gaggia G. Ney A. Mahamed I. Acedo P. The state-of-the-art of phase II/III clinical trials for targeted pancreatic cancer therapies. J. Clin. Med. 2021 10 4 566 10.3390/jcm10040566 33546207
    [Google Scholar]
  79. Baghel U.S. Kriplani P. Patel N.M. Kaur M. Sharma K. Meghani M. Sharma A. Singh D. Singh B. Setzer W.N. Sharifi-Rad J. Calina D. Flavopiridol: A promising cyclin-dependent kinase inhibitor in cancer treatment. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 4 3489 3511 10.1007/s00210‑024‑03599‑2 39589530
    [Google Scholar]
  80. Bahleda R. Grilley-Olson J.E. Govindan R. Barlesi F. Greillier L. Perol M. Ray-Coquard I. Strumberg D. Schultheis B. Dy G.K. Zalcman G. Weiss G.J. Walter A.O. Kornacker M. Rajagopalan P. Henderson D. Nogai H. Ocker M. Soria J.C. Phase I dose-escalation studies of roniciclib, a pan-cyclin-dependent kinase inhibitor, in advanced malignancies. Br. J. Cancer 2017 116 12 1505 1512 10.1038/bjc.2017.92 28463960
    [Google Scholar]
  81. Shirsath N.P. Manohar S.M. Joshi K.S. P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines. Mol. Cancer 2012 11 1 77 10.1186/1476‑4598‑11‑77 23075291
    [Google Scholar]
  82. Santo L. Vallet S. Hideshima T. Cirstea D. Ikeda H. Pozzi S. Patel K. Okawa Y. Gorgun G. Perrone G. Calabrese E. Yule M. Squires M. Ladetto M. Boccadoro M. Richardson P.G. Munshi N.C. Anderson K.C. Raje N. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3β activation and RNA polymerase II inhibition. Oncogene 2010 29 16 2325 2336 10.1038/onc.2009.510 20101221
    [Google Scholar]
  83. Raje N. Kumar S. Hideshima T. Roccaro A. Ishitsuka K. Yasui H. Shiraishi N. Chauhan D. Munshi N.C. Green S.R. Anderson K.C. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 2005 106 3 1042 1047 10.1182/blood‑2005‑01‑0320 15827128
    [Google Scholar]
  84. Zhong W.Z. Lalovic B. Zhan J. Characterization of in vitro and in vivo metabolism of AG-024322, a novel cyclin-dependent kinase (CDK). Health. 2009 1 4 249 262 10.4236/health.2009.14041
    [Google Scholar]
  85. Brown A.P. Courtney C.L. Criswell K.A. Holliman C.L. Evering W. Jessen B.A. Toxicity and toxicokinetics of the cyclin-dependent kinase inhibitor AG-024322 in cynomolgus monkeys following intravenous infusion. Cancer Chemother Pharmacol. 2008 62 6 1091 1101 10.1007/s00280‑008‑0771‑1 18509643
    [Google Scholar]
  86. Shaikh J. Patel K. Khan T. Advances in pyrazole based scaffold as cyclin-dependent kinase 2 inhibitors for the treatment of cancer. Mini Rev. Med. Chem. 2022 22 8 1197 1215 10.2174/1389557521666211027104957 34711160
    [Google Scholar]
  87. Li T. Weng T. Zuo M. Wei Z. Chen M. Li Z. Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Med. Chem. 2016 8 17 2047 2076 10.4155/fmc‑2016‑0129 27774795
    [Google Scholar]
  88. DePinto W. Chu X.J. Yin X. Smith M. Packman K. Goelzer P. Lovey A. Chen Y. Qian H. Hamid R. Xiang Q. Tovar C. Blain R. Nevins T. Higgins B. Luistro L. Kolinsky K. Felix B. Hussain S. Heimbrook D. In vitro and in vivo activity of R547: A potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol. Cancer Ther. 2006 5 11 2644 2658 10.1158/1535‑7163.MCT‑06‑0355 17121911
    [Google Scholar]
  89. van der Biessen D.A.J. Burger H. de Bruijn P. Lamers C.H.J. Naus N. Loferer H. Wiemer E.A.C. Mathijssen R.H.J. de Jonge M.J.A. Phase I study of RGB-286638, a novel, multitargeted cyclin-dependent kinase inhibitor in patients with solid tumors. Clin. Cancer Res. 2014 20 18 4776 4783 10.1158/1078‑0432.CCR‑14‑0325 25024258
    [Google Scholar]
  90. Byth K.F. Thomas A. Hughes G. Forder C. McGregor A. Geh C. Oakes S. Green C. Walker M. Newcombe N. Green S. Growcott J. Barker A. Wilkinson R.W. AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to pharmacodynamic changes and potent antitumor effects in human tumor xenografts. Mol. Cancer Ther. 2009 8 7 1856 1866 10.1158/1535‑7163.MCT‑08‑0836 19509270
    [Google Scholar]
  91. Marko D. Schätzle S. Friedel A. Genzlinger A. Zankl H. Meijer L. Eisenbrand G. Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br J. Cancer 2001 84 2 283 289 10.1054/bjoc.2000.1546 11161389
    [Google Scholar]
  92. Xu J. Lin D.I. Oncogenic c-terminal cyclin D1 (CCND1) mutations are enriched in endometrioid endometrial adenocarcinomas. PLoS One 2018 13 7 e0199688 10.1371/journal.pone.0199688 29969496
    [Google Scholar]
  93. Guerrero-Zotano Á. Belli S. Zielinski C. Gil-Gil M. Fernandez-Serra A. Ruiz-Borrego M. Ciruelos Gil E.M. Pascual J. Muñoz-Mateu M. Bermejo B. Margeli Vila M. Antón A. Murillo L. Nissenbaum B. Liu Y. Herranz J. Fernández-García D. Caballero R. López-Guerrero J.A. Bianco R. Formisano L. Turner N. Martín M. CCNE1 and PLK1 mediate resistance to palbociclib in HR+/HER2− metastatic breast cancer. Clin. Cancer Res. 2023 29 8 1557 1568 10.1158/1078‑0432.CCR‑22‑2206 36749874
    [Google Scholar]
  94. Bisteau X. Paternot S. Colleoni B. Ecker K. Coulonval K. De Groote P. Declercq W. Hengst L. Roger P.P. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet. 2013 9 5 e1003546 10.1371/journal.pgen.1003546 23737759
    [Google Scholar]
  95. Lin J.C. Liu T.P. Yang P.M. CDKN2A-inactivated pancreatic ductal adenocarcinoma exhibits therapeutic sensitivity to paclitaxel: a bioinformatics study. J. Clin. Med. 2020 9 12 4019 10.3390/jcm9124019 33322698
    [Google Scholar]
  96. Vachtenheim J. Ondrušová L. Many distinct ways lead to drug resistance in BRAF-and NRAS-mutated melanomas. Life. 2021 11 5 424 10.3390/life11050424 34063141
    [Google Scholar]
  97. Guerrero-Zotano A.L. Stricker T.P. Formisano L. Hutchinson K.E. Stover D.G. Lee K.M. Schwarz L.J. Giltnane J.M. Estrada M.V. Jansen V.M. Servetto A. Gavilá J. Perez-Fidalgo J.A. Lluch A. Llombart-Cussac A. Bayar M.A. Michiels S. André F. Arnedos M. Guillem V. Ruiz-Simon A. Arteaga C.L.ER + breast cancers resistant to prolonged neoadjuvant letrozole exhibit an E2F4 transcriptional program sensitive to CDK4/6 inhibitors. Clin. Cancer Res. 2018 24 11 2517 2529 10.1158/1078‑0432.CCR‑17‑2904 29581135
    [Google Scholar]
  98. Linn P. Kohno S. Sheng J. Kulathunga N. Yu H. Zhang Z. Voon D. Watanabe Y. Takahashi C. Targeting RB1 loss in cancers. Cancers 2021 13 15 3737 10.3390/cancers13153737 34359636
    [Google Scholar]
  99. Hawash M. Advances in cancer therapy: A comprehensive review of CDK and EGFR inhibitors. Cells 2024 13 19 1656 10.3390/cells13191656 39404419
    [Google Scholar]
  100. Khan S.U. Fatima K. Aisha S. Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell. Commun. Signal. 2024 22 1 109 10.1186/s12964‑023‑01302‑1 38347575
    [Google Scholar]
  101. Tetsu O. McCormick F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell. 2003 3 3 233 245 10.1016/S1535‑6108(03)00053‑9 12676582
    [Google Scholar]
  102. Yang Q. Ferrell J.E. The CDK1–APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat. Cell. Biol. 2013 15 5 519 525 10.1038/ncb2737 23624406
    [Google Scholar]
  103. Gomatou G. Trontzas I. Ioannou S. Drizou M. Syrigos N. Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol. Biol. Rep. 2021 48 1 915 925 10.1007/s11033‑020‑06100‑3 33409716
    [Google Scholar]
  104. Panagiotou E. Gomatou G. Trontzas I.P. Syrigos N. Kotteas E. Cyclin-dependent kinase (CDK) inhibitors in solid tumors: A review of clinical trials. Clin. Transl. Oncol. 2022 24 2 161 192 10.1007/s12094‑021‑02688‑5 34363593
    [Google Scholar]
  105. Sokhi S. Lewis C.W. Bukhari A.B. Hadfield J. Xiao E.J. Fung J. Yoon Y.J. Hsu W.H. Gamper A.M. Chan G.K. Myt1 overexpression mediates resistance to cell cycle and DNA damage checkpoint kinase inhibitors. Front. Cell. Dev. Biol. 2023 11 1270542 10.3389/fcell.2023.1270542 38020882
    [Google Scholar]
  106. Trusolino L. Bertotti A. Compensatory pathways in oncogenic kinase signaling and resistance to targeted therapies: Six degrees of separation. Cancer Discov. 2012 2 10 876 880 10.1158/2159‑8290.CD‑12‑0400 23071031
    [Google Scholar]
  107. Senderowicz A.M. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs 1999 17 3 313 320 10.1023/A:1006353008903 10665481
    [Google Scholar]
  108. Nemunaitis J.J. Small K.A. Kirschmeier P. Zhang D. Zhu Y. Jou Y.M. Statkevich P. Yao S.L. Bannerji R. A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J. Transl. Med. 2013 11 1 259 10.1186/1479‑5876‑11‑259 24131779
    [Google Scholar]
  109. Seftel M.D. Kuruvilla J. Banerji V. Fraser G. Xu H. Powers J. Crocker S. Toguchi M. Lyons J.F. Seymour L. Hay A.E. A phase II study of AT7519M, a CDK inhibitor, in patients with chronic lymphocytic leukemia: NCIC CTG Trial IND. 193. Blood 2014 124 21 5670 10.1182/blood.V124.21.5670.5670
    [Google Scholar]
  110. House I. Valore-Caplan M. Maris E. Falchook G.S. Cyclin Dependent Kinase 2 (CDK2) Inhibitors in Oncology Clinical Trials: A Review. J. Immunother. Precis. Oncol. 2025 8 1 47 54 10.36401/JIPO‑24‑22 39811424
    [Google Scholar]
  111. Murphy C.G. Dickler M.N. The role of CDK4/6 inhibition in breast cancer. Oncologist 2015 20 5 483 490 10.1634/theoncologist.2014‑0443 25876993
    [Google Scholar]
  112. Deep A. Marwaha R.K. Marwaha M.G. Jyoti J. Nandal R. Sharma A.K. Flavopiridol as cyclin dependent kinase (CDK) inhibitor: A review. New J. Chem. 2018 42 23 18500 18507 10.1039/C8NJ04306J
    [Google Scholar]
  113. Zhang M. Zhang L. Hei R. Li X. Cai H. Wu X. Zheng Q. Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 2021 11 5 1913 1935 34094661
    [Google Scholar]
  114. Zhao W. Zhang L. Zhang Y. Jiang Z. Lu H. Xie Y. Han W. Zhao W. He J. Shi Z. Yang H. Chen J. Chen S. Li Z. Mao J. Zhou L. Gao X. Li W. Tan G. Zhang B. Wang Z. The CDK inhibitor AT7519 inhibits human glioblastoma cell growth by inducing apoptosis, pyroptosis and cell cycle arrest. Cell Death Dis. 2023 14 1 11 10.1038/s41419‑022‑05528‑8 36624090
    [Google Scholar]
  115. Liu Y. Wu J. Ji Z. Chen L. Zou J. Zheng J. Lin W. Cai J. Chen Y. Zheng D. Chen Y. Li Z. Comparative efficacy and safety of different combinations of three CDK4/6 inhibitors with endocrine therapies in HR+/HER-2 − metastatic or advanced breast cancer patients: a network meta-analysis. BMC Cancer 2023 23 1 816 10.1186/s12885‑023‑11322‑2 37653504
    [Google Scholar]
  116. Malyukova A. Lahnalampi M. Falqués-Costa T. Pölönen P. Sipola M. Mehtonen J. Teppo S. Akopyan K. Viiliainen J. Lohi O. Hagström-Andersson A.K. Heinäniemi M. Sangfelt O. Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia. Genome Biol. 2024 25 1 143 10.1186/s13059‑024‑03260‑4 38822412
    [Google Scholar]
  117. Cai Q. Guo R. Chen D. Deng Z. Gao J. SynBioNanoDesign: Pioneering targeted drug delivery with engineered nanomaterials. J. Nanobiotechnology 2025 23 1 178 10.1186/s12951‑025‑03254‑9 40050980
    [Google Scholar]
  118. Amin S. Bathe O.F. Response biomarkers: Re-envisioning the approach to tailoring drug therapy for cancer. BMC Cancer 2016 16 1 850 10.1186/s12885‑016‑2886‑9 27814715
    [Google Scholar]
  119. Feng X. Li Z. Liu Y. Chen D. Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: From uncovering regulatory mechanisms to therapeutic applications. Exp. Hematol. Oncol. 2024 13 1 102 10.1186/s40164‑024‑00570‑y 39427211
    [Google Scholar]
  120. Di Carlo E. Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark. Res. 2024 12 1 156 10.1186/s40364‑024‑00701‑x 39696697
    [Google Scholar]
  121. Jiménez-Luna J. Grisoni F. Weskamp N. Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin. Drug Discov 2021 16 9 949 959 10.1080/17460441.2021.1909567 33779453
    [Google Scholar]
  122. Miranda F. Prazeres H. Mendes F. Martins D. Schmitt F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: The most promising predictive biomarkers. Mol. Biol. Rep. 2022 49 1 717 733 10.1007/s11033‑021‑06863‑3 34739691
    [Google Scholar]
  123. Sharma V. Singh A. Chauhan S. Sharma P.K. Chaudhary S. Sharma A. Porwal O. Fuloria N.K. Role of artificial intelligence in drug discovery and target identification in cancer. Curr. Drug Deliv. 2024 21 6 870 886 10.2174/1567201821666230905090621 37670704
    [Google Scholar]
  124. Ozaybi M.Q.B. Madkhali A.N.M. Alhazmi M.A.M. faqihi, H.; Alanazi, M.M.; Siraj, W.H.Y.; Zalah, A.H.A.; Khormi, M.M.A.; al salem, A.; Mashragi, T.Q.M.; Alotaibi, A.N.; Naji, A.A.M.; Bagal, R.M.A.; Maswdi, A.M.M.; Marwee, H.A.A. The Role of Artificial Intelligence in Drug Discovery and Development. Egypt. J. Chem. 2024 67 13 1541 1547 10.21608/ejchem.2024.337877.10835
    [Google Scholar]
  125. Asghar A. Chohan T.A. Khurshid U. Saleem H. Mustafa M.W. Khursheed A. Alafnan A. Batul R. Bin Break M.K. Almansour K. Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem. Biol. Interact. 2024 393 110940 10.1016/j.cbi.2024.110940 38467339
    [Google Scholar]
  126. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  127. Ramsundar B. Eastman P. Walters P. Pande V. Deep learning for the life sciences: Applying deep learning to genomics, microscopy, drug discovery, and more. Sebastopol, CA O'Reilly Media 2019
    [Google Scholar]
  128. Heid E. Greenman K.P. Chung Y. Li S.C. Graff D.E. Vermeire F.H. Wu H. Green W.H. McGill C.J. Chemprop: A machine learning package for chemical property prediction. J. Chem. Inf Model 2024 64 1 9 17 10.1021/acs.jcim.3c01250 38147829
    [Google Scholar]
  129. Du P. Fan R. Zhang N. Wu C. Zhang Y. Advances in integrated multi-omics analysis for drug-target identification. Biomolecules 2024 14 6 692 10.3390/biom14060692 38927095
    [Google Scholar]
  130. Ocana A. Pandiella A. Privat C. Bravo I. Luengo-Oroz M. Amir E. Gyorffy B. Integrating artificial intelligence in drug discovery and early drug development: A transformative approach. Biomark. Res. 2025 13 1 45 10.1186/s40364‑025‑00758‑2 40087789
    [Google Scholar]
  131. Leng D. Zheng L. Wen Y. Zhang Y. Wu L. Wang J. Wang M. Zhang Z. He S. Bo X. A benchmark study of deep learning-based multi-omics data fusion methods for cancer. Genome Biol. 2022 23 1 171 10.1186/s13059‑022‑02739‑2 35945544
    [Google Scholar]
  132. Ballard J.L. Wang Z. Li W. Shen L. Long Q. Deep learning-based approaches for multi-omics data integration and analysis. BioData Min 2024 17 1 38 10.1186/s13040‑024‑00391‑z 39358793
    [Google Scholar]
  133. Badawy M. Ramadan N. Hefny H.A. Healthcare predictive analytics using machine learning and deep learning techniques: A survey. J. Electr. Syst. Inf Technol 2023 10 1 40 10.1186/s43067‑023‑00108‑y
    [Google Scholar]
  134. Amiri Z. Heidari A. Navimipour N.J. Unal M. Mousavi A. Adventures in data analysis: A systematic review of Deep Learning techniques for pattern recognition in cyber-physical-social systems. Multimedia Tools Appl. 2023 83 8 22909 22973 10.1007/s11042‑023‑16382‑x
    [Google Scholar]
  135. Frasca M. La Torre D. Repetto M. De Nicolò V. Pravettoni G. Cutica I. Artificial intelligence applications to genomic data in cancer research: A review of recent trends and emerging areas. Discover Analytics 2024 2 1 10 10.1007/s44257‑024‑00017‑y
    [Google Scholar]
  136. Qin R.X. Yang Y. Chen J.F. Huang L.J. Xu W. Qin Q.C. Liang X.J. Lai X.Y. Huang X.Y. Xie M.S. Chen L. Transcriptomic analysis reveals the potential biological mechanism of AIS and lung adenocarcinoma. Front Neurol. 2023 14 1119160 10.3389/fneur.2023.1119160 37265472
    [Google Scholar]
  137. Li J. Wang Y. Wang X. Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: Evidence from integrated bioinformatics analysis. World J. Surg. Oncol. 2020 18 1 50 10.1186/s12957‑020‑01817‑8 32127012
    [Google Scholar]
  138. Shen J. Gong X. Ren H. Tang X. Yu H. Tang Y. Chen S. Ji M. Identification and validation of CDK1 as a promising therapeutic target for Eriocitrin in colorectal cancer: A combined bioinformatics and experimental approach. BMC Cancer 2025 25 1 76 10.1186/s12885‑025‑13448‑x 39806333
    [Google Scholar]
  139. Kim D.N. Yin T. Zhang T. Im A.K. Cort J.R. Rozum J.C. Pollock D. Qian W.J. Feng S. Artificial intelligence transforming post-translational modification research. Bioengineering 2024 12 1 26 10.3390/bioengineering12010026 39851300
    [Google Scholar]
  140. Ertelt M. Mulligan V.K. Maguire J.B. Lyskov S. Moretti R. Schiffner T. Meiler J. Schoeder C.T. Combining machine learning with structure-based protein design to predict and engineer post-translational modifications of proteins. PLOS Comput. Biol. 2024 20 3 e1011939 10.1371/journal.pcbi.1011939 38484014
    [Google Scholar]
  141. Ren F. Ding X. Zheng M. Korzinkin M. Cai X. Zhu W. Mantsyzov A. Aliper A. Aladinskiy V. Cao Z. Kong S. Long X. Man Liu B.H. Liu Y. Naumov V. Shneyderman A. Ozerov I.V. Wang J. Pun F.W. Polykovskiy D.A. Sun C. Levitt M. Aspuru-Guzik A. Zhavoronkov A. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. 2023 14 6 1443 1452 10.1039/D2SC05709C 36794205
    [Google Scholar]
  142. Guo S.B. Meng Y. Lin L. Zhou Z.Z. Li H.L. Tian X.P. Huang W.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation. Mol. Cancer 2024 23 1 223 10.1186/s12943‑024‑02140‑6 39369244
    [Google Scholar]
  143. Aderinwale T. Bharadwaj V. Christoffer C. Terashi G. Zhang Z. Jahandideh R. Kagaya Y. Kihara D. Real-time structure search and structure classification for AlphaFold protein models. Commun Biol. 2022 5 1 316 10.1038/s42003‑022‑03261‑8 35383281
    [Google Scholar]
  144. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  145. Neef R. Gruneberg U. Kopajtich R. Li X. Nigg E.A. Sillje H. Barr F.A. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nat. Cell. Biol. 2007 9 4 436 444 10.1038/ncb1557 17351640
    [Google Scholar]
  146. Kaveh S. Mani-Varnosfaderani A. Neiband M.S. Deriving general structure–activity/selectivity relationship patterns for different subfamilies of cyclin-dependent kinase inhibitors using machine learning methods. Sci. Rep 2024 14 1 15315 10.1038/s41598‑024‑66173‑z 38961127
    [Google Scholar]
  147. Naithani U. Guleria V. Integrative computational approaches for discovery and evaluation of lead compound for drug design. Front Drug Discov 2024 4 1362456 10.3389/fddsv.2024.1362456
    [Google Scholar]
  148. Teotia V. Jha P. Chopra M. Discovery of potential inhibitors of CDK1 by integrating pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation studies, and evaluation of their inhibitory activity. ACS Omega 2024 9 38 39873 39892 10.1021/acsomega.4c05414 39346877
    [Google Scholar]
  149. Zhou G. Rusnac D.V. Park H. Canzani D. Nguyen H.M. Stewart L. Bush M.F. Nguyen P.T. Wulff H. Yarov-Yarovoy V. Zheng N. DiMaio F. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat. Commun 2024 15 1 7761 10.1038/s41467‑024‑52061‑7 39237523
    [Google Scholar]
  150. Beroza P. Crawford J.J. Ganichkin O. Gendelev L. Harris S.F. Klein R. Miu A. Steinbacher S. Klingler F.M. Lemmen C. Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat. Commun. 2022 13 1 6447 10.1038/s41467‑022‑33981‑8 36307407
    [Google Scholar]
  151. Muhsen I.N. Hashmi S.K. Utilizing machine learning in predictive modeling: what’s next? Bone Marrow Transplant. 2022 57 5 699 700 10.1038/s41409‑022‑01622‑9 35292752
    [Google Scholar]
  152. Alber M. Buganza Tepole A. Cannon W.R. De S. Dura-Bernal S. Garikipati K. Karniadakis G. Lytton W.W. Perdikaris P. Petzold L. Kuhl E. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2019 2 1 115 10.1038/s41746‑019‑0193‑y 31799423
    [Google Scholar]
  153. Sharma A. Lysenko A. Jia S. Boroevich K.A. Tsunoda T. Advances in AI and machine learning for predictive medicine. J. Hum. Genet. 2024 69 10 487 497 10.1038/s10038‑024‑01231‑y 38424184
    [Google Scholar]
  154. Wells C.I. Vasta J.D. Corona C.R. Wilkinson J. Zimprich C.A. Ingold M.R. Pickett J.E. Drewry D.H. Pugh K.M. Schwinn M.K. Hwang B. Zegzouti H. Huber K.V.M. Cong M. Meisenheimer P.L. Willson T.M. Robers M.B. Quantifying CDK inhibitor selectivity in live cells. Nat. Commun 2020 11 1 2743 10.1038/s41467‑020‑16559‑0 32488087
    [Google Scholar]
  155. Liu Y. Grimm M. Dai W. Hou M. Xiao Z.X. Cao Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta. Pharmacol. Sin 2020 41 1 138 144 10.1038/s41401‑019‑0228‑6 31263275
    [Google Scholar]
  156. Chatterjee A. Walters R. Shafi Z. Ahmed O.S. Sebek M. Gysi D. Yu R. Eliassi-Rad T. Barabási A.L. Menichetti G. Improving the generalizability of protein-ligand binding predictions with AI-Bind. Nat. Commun. 2023 14 1 1989 10.1038/s41467‑023‑37572‑z 37031187
    [Google Scholar]
  157. Pecina A. Fanfrlík J. Lepšík M. Řezáč J. SQM2.20: Semiempirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. Nat. Commun. 2024 15 1 1127 10.1038/s41467‑024‑45431‑8 38321025
    [Google Scholar]
  158. Wójcikowski M. Ballester P.J. Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017 7 1 46710 10.1038/srep46710 28440302
    [Google Scholar]
  159. Mohamed Abdul Cader J. Newton M.A.H. Rahman J. Mohamed Abdul Cader A.J. Sattar A. Ensembling methods for protein-ligand binding affinity prediction. Sci. Rep 2024 14 1 24447 10.1038/s41598‑024‑72784‑3 39424851
    [Google Scholar]
  160. Valous N.A. Popp F. Zörnig I. Jäger D. Charoentong P. Graph machine learning for integrated multi-omics analysis. Br. J. Cancer 2024 131 2 205 211 10.1038/s41416‑024‑02706‑7 38729996
    [Google Scholar]
  161. Chen S. Zhang O. Jiang C. Zhao H. Zhang X. Chen M. Liu Y. Su Q. Wu Z. Wang X. Qu W. Ye Y. Chai X. Wang N. Wang T. An Y. Wu G. Yang Q. Chen J. Xie W. Lin H. Li D. Hsieh C-Y. Huang Y. Kang Y. Hou T. Pan P. Deep lead optimization enveloped in protein pocket and its application in designing potent and selective ligands targeting LTK protein. Nat. Mach. Intell. 2025 7 3 448 458 10.1038/s42256‑025‑00997‑w
    [Google Scholar]
  162. Huang L. Xu T. Yu Y. Zhao P. Chen X. Han J. Xie Z. Li H. Zhong W. Wong K.C. Zhang H. A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets. Nat. Commun 2024 15 1 2657 10.1038/s41467‑024‑46569‑1 38531837
    [Google Scholar]
  163. Atz K. Cotos L. Isert C. Håkansson M. Focht D. Hilleke M. Nippa D.F. Iff M. Ledergerber J. Schiebroek C.C.G. Romeo V. Hiss J.A. Merk D. Schneider P. Kuhn B. Grether U. Schneider G. Prospective de novo drug design with deep interactome learning. Nat. Commun 2024 15 1 3408 10.1038/s41467‑024‑47613‑w 38649351
    [Google Scholar]
  164. Mao X. Chu Y. Wei D. Designed with interactome-based deep learning. Nat. Chem. Biol. 2024 20 11 1399 1401 10.1038/s41589‑024‑01754‑7 39424957
    [Google Scholar]
  165. Mullard A. What does AlphaFold mean for drug discovery? Nat. Rev. Drug Discov. 2021 20 10 725 727 10.1038/d41573‑021‑00161‑0 34522032
    [Google Scholar]
  166. Yang Z. Zeng X. Zhao Y. Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 2023 8 1 115 10.1038/s41392‑023‑01381‑z 36918529
    [Google Scholar]
  167. Macedo B. Ribeiro Vaz I. Taveira Gomes T. MedGAN: Optimized generative adversarial network with graph convolutional networks for novel molecule design. Sci. Rep. 2024 14 1 1212 10.1038/s41598‑023‑50834‑6 38216614
    [Google Scholar]
  168. Du Y. Jamasb A.R. Guo J. Fu T. Harris C. Wang Y. Duan C. Liò P. Schwaller P. Blundell T.L. Machine learning-aided generative molecular design. Nat. Mach Intell. 2024 6 6 589 604 10.1038/s42256‑024‑00843‑5
    [Google Scholar]
  169. Wu M.H. Xie Z. Zhi D. A folding-docking-affinity framework for protein-ligand binding affinity prediction. Commun Chem. 2025 8 1 108 10.1038/s42004‑025‑01506‑1 40195508
    [Google Scholar]
  170. Liu H. Chen P. Zhai X. Huo K.G. Zhou S. Han L. Fan G. PPB-Affinity: Protein-Protein binding affinity dataset for ai-based protein drug discovery. Sci. Data 2024 11 1 1316 10.1038/s41597‑024‑03997‑4 39627219
    [Google Scholar]
  171. Habiballah S. Reisfeld B. Adapting physiologically-based pharmacokinetic models for machine learning applications. Sci. Rep. 2023 13 1 14934 10.1038/s41598‑023‑42165‑3 37696914
    [Google Scholar]
  172. Hutson M. How AI is being used to accelerate clinical trials. Nature 2024 627 8003 S2 S5 10.1038/d41586‑024‑00753‑x 38480968
    [Google Scholar]
  173. Zhang B. Zhang L. Chen Q. Jin Z. Liu S. Zhang S. Harnessing artificial intelligence to improve clinical trial design. Commun Med. 2023 3 1 191 10.1038/s43856‑023‑00425‑3 38129570
    [Google Scholar]
  174. Jin Q. Wang Z. Floudas C.S. Chen F. Gong C. Bracken-Clarke D. Xue E. Yang Y. Sun J. Lu Z. Matching patients to clinical trials with large language models. Nat. Commun 2024 15 1 9074 10.1038/s41467‑024‑53081‑z 39557832
    [Google Scholar]
  175. Rosenthal J.T. Beecy A. Sabuncu M.R. Rethinking clinical trials for medical AI with dynamic deployments of adaptive systems. npj. Digit. Med. 2025 8 1 252 10.1038/s41746‑025‑01674‑3 40328886
    [Google Scholar]
  176. Yang X. Hu X. Yin J. Li W. Fu Y. Yang B. Fan J. Lu F. Qin T. Kang X. Zhuang X. Li F. Xiao R. Shi T. Song K. Li J. Chen G. Sun C. Comprehensive multi-omics analysis reveals WEE1 as a synergistic lethal target with hyperthermia through CDK1 super-activation. Nat. Commun 2024 15 1 2089 10.1038/s41467‑024‑46358‑w 38453961
    [Google Scholar]
  177. Banyai G. Baïdi F. Coudreuse D. Szilagyi Z. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription. Nat. Commun 2016 7 1 11161 10.1038/ncomms11161 27045731
    [Google Scholar]
  178. Horejs C.M. Artificial intelligence identifies new cancer biomarkers. Nat. Rev. Bioeng. 2023 1 5 313 10.1038/s44222‑023‑00069‑x
    [Google Scholar]
  179. Overgaard S.M. Graham M.G. Brereton T. Pencina M.J. Halamka J.D. Vidal D.E. Economou-Zavlanos N.J. Implementing quality management systems to close the AI translation gap and facilitate safe, ethical, and effective health AI solutions. NPJ Digit. Med. 2023 6 1 218 10.1038/s41746‑023‑00968‑8 38007604
    [Google Scholar]
  180. Hutson M. Rules to keep AI in check: Nations carve different paths for tech regulation. Nature 2023 620 7973 260 263 10.1038/d41586‑023‑02491‑y 37553464
    [Google Scholar]
  181. Zaidan E. Ibrahim I.A. AI governance in a complex and rapidly changing regulatory landscape: A global perspective. Humanit Soc. Sci. Commun 2024 11 1 1121 10.1057/s41599‑024‑03560‑x
    [Google Scholar]
  182. Wang X.Q. Lo C.M. Chen L. Ngan E.S.W. Xu A. Poon R.Y.C. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell. Death Differ 2017 24 1 38 48 10.1038/cdd.2016.84 27636107
    [Google Scholar]
  183. Richardson J.P. Smith C. Curtis S. Watson S. Zhu X. Barry B. Sharp R.R. Patient apprehensions about the use of artificial intelligence in healthcare. NPJ Digit. Med. 2021 4 1 140 10.1038/s41746‑021‑00509‑1 34548621
    [Google Scholar]
  184. Di Sante G. Pagé J. Jiao X. Nawab O. Cristofanilli M. Skordalakes E. Pestell R.G. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev. Anticancer Ther. 2019 19 7 569 587 10.1080/14737140.2019.1615889 31219365
    [Google Scholar]
  185. Li J. Huo X. Zhao F. Ren D. Ahmad R. Yuan X. Du F. Zhao J. Association of cyclin-dependent Kinases 4 and 6 inhibitors with survival in patients with hormone receptor–positive metastatic breast cancer: A systematic review and meta-analysis. JAMA Netw Open 2020 3 10 e2020312 e2020312 10.1001/jamanetworkopen.2020.20312 33048129
    [Google Scholar]
  186. Asciolla J.J. Wu X. Adamopoulos C. Gavathiotis E. Poulikakos P.I. Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer. Nat. Cancer 2025 6 1 24 40 10.1038/s43018‑024‑00893‑z 39885369
    [Google Scholar]
  187. Abdelmalak M. Singh R. Anwer M. Ivanchenko P. Randhawa A. Ahmed M. Ashton A.W. Du Y. Jiao X. Pestell R. The renaissance of CDK inhibitors in breast cancer therapy: An update on clinical trials and therapy resistance. Cancers 2022 14 21 5388 10.3390/cancers14215388 36358806
    [Google Scholar]
  188. Wu C.X. Wang X.Q. Chok S.H. Man K. Tsang S.H.Y. Chan A.C.Y. Ma K.W. Xia W. Cheung T.T. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics 2018 8 14 3737 3750 10.7150/thno.25487 30083256
    [Google Scholar]
  189. Di Stefano M. Piazza L. Poles C. Galati S. Granchi C. Giordano A. Campisi L. Macchia M. Poli G. Tuccinardi T. KinasePred: A computational tool for small-molecule kinase target prediction. Int. J. Mol. Sci. 2025 26 5 2157 10.3390/ijms26052157 40076779
    [Google Scholar]
  190. Wu J. Chen Y. Wu J. Zhao D. Huang J. Lin M. Wang L. Large-scale comparison of machine learning methods for profiling prediction of kinase inhibitors. J. Cheminform 2024 16 1 13 10.1186/s13321‑023‑00799‑5 38291477
    [Google Scholar]
  191. Yang K. Swanson K. Jin W. Coley C. Eiden P. Gao H. Guzman-Perez A. Hopper T. Kelley B. Mathea M. Palmer A. Settels V. Jaakkola T. Jensen K. Barzilay R. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model 2019 59 8 3370 3388 10.1021/acs.jcim.9b00237 31361484
    [Google Scholar]
  192. Bhat A.A. Nisar S. Mukherjee S. Saha N. Yarravarapu N. Lone S.N. Masoodi T. Chauhan R. Maacha S. Bagga P. Dhawan P. Akil A.A.S. El-Rifai W. Uddin S. Reddy R. Singh M. Macha M.A. Haris M. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J. Transl. Med. 2022 20 1 534 10.1186/s12967‑022‑03765‑1 36401282
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073426310251010113112
Loading
/content/journals/cchts/10.2174/0113862073426310251010113112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test