Skip to content
2000
image of Lingguizhugan Decoction Attenuates Angiotensin II-Induced Cardiac Hypertrophy Through the LITAF Signaling Pathway

Abstract

Objective

Lingguizhugan Decoction (LGZGD), a traditional Chinese herbal prescription with recognized efficacy in heart failure, has an unclear mechanism against cardiac hypertrophy. This study investigated its protective effects against angiotensin II (Ang II)-induced cardiac hypertrophy and the role of the LITAF signaling pathway.

Methods

An mouse model of cardiac hypertrophy was established continuous Ang II infusion. LGZGD was administered, and its effects on cardiac function, hypertrophy markers, and pathway proteins were evaluated using echocardiography, histopathology, and molecular techniques. , H9c2 cardiomyocytes were treated with Ang II to induce hypertrophy; LGZGD-containing serum was applied to assess the impacts on cell size, hypertrophic markers, and signaling pathways. LITAF expression in H9c2 cells was silenced siRNA to validate its role in LGZGD-mediated anti-hypertrophy.

Results

LGZGD improved cardiac function, reduced cardiomyocyte size, and downregulated hypertrophic markers. It also upregulated LITAF protein expression and suppressed the phosphorylation of ASK1, JNK1/2, and p38 MAPK. LGZGD-containing serum inhibited Ang II-induced H9c2 hypertrophy activating LITAF and inhibiting the ASK1–JNK/p38 pathway. LITAF silencing reversed these anti-hypertrophic effects, confirming its pivotal role in mediating LGZGD's protective action.

Discussion

LGZGD alleviates cardiac hypertrophy by activating LITAF and inhibiting the ASK1-JNK/p38 pathway, identifying key therapeutic targets of this formula. These findings advance understanding of LITAF’s non-inflammatory cardiovascular protective roles and provide insights into multi-target strategies for cardiac hypertrophy.

Conclusion

LGZGD attenuates Ang II-induced cardiac hypertrophy by activating the LITAF pathway and inhibiting the ASK1-JNK/p38 signaling cascade.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073421853251128081254
2026-01-12
2026-01-29
Loading full text...

Full text loading...

References

  1. Virani S.S. Alonso A. Benjamin E.J. Bittencourt M.S. Callaway C.W. Carson A.P. Chamberlain A.M. Chang A.R. Cheng S. Delling F.N. Djousse L. Elkind M.S.V. Ferguson J.F. Fornage M. Khan S.S. Kissela B.M. Knutson K.L. Kwan T.W. Lackland D.T. Lewis T.T. Lichtman J.H. Longenecker C.T. Loop M.S. Lutsey P.L. Martin S.S. Matsushita K. Moran A.E. Mussolino M.E. Perak A.M. Rosamond W.D. Roth G.A. Sampson U.K.A. Satou G.M. Schroeder E.B. Shah S.H. Shay C.M. Spartano N.L. Stokes A. Tirschwell D.L. VanWagner L.B. Tsao C.W. Heart disease and stroke statistics—2020 update: A report from the American heart association. Circulation 2020 141 9 e139 e596 10.1161/CIR.0000000000000757 31992061
    [Google Scholar]
  2. Savarese G. Becher P.M. Lund L.H. Seferovic P. Rosano G.M.C. Coats A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023 118 17 3272 3287 10.1093/cvr/cvac013 35150240
    [Google Scholar]
  3. Qin J. Xiong J. Chen C. Wang X. Gao Y. Zhou Y. Zheng G. Gong K. Influencing factors of kinesiophobia in older patients with chronic heart failure: A structural equation model. Clin. Cardiol. 2023 46 7 729 736 10.1002/clc.24024 37114367
    [Google Scholar]
  4. Li Y. Sun X.L. Qiu H. Qin J. Li C.S. Yu X.Z. Wang G.X. Fu Y. Zheng Y.A. Zhao B. Yu D.M. Wang S.J. Wang G.G. Long-term outcomes and independent predictors of mortality in patients presenting to emergency departments with acute heart failure in Beijing: A multicenter cohort study with a 5-year follow-up. Chin. Med. J. 2021 134 15 1803 1811 10.1097/CM9.0000000000001617 34224408
    [Google Scholar]
  5. Bazgir F. Nau J. Nakhaei-Rad S. Amin E. Wolf M.J. Saucerman J.J. Lorenz K. Ahmadian M.R. The microenvironment of the pathogenesis of cardiac hypertrophy. Cells 2023 12 13 1780 10.3390/cells12131780 37443814
    [Google Scholar]
  6. Chen K.J. Wu Z.G. Zhu M.J. Mao J.Y. Xu H. Expert consensus on the diagnosis and treatment of chronic heart failure. Chin. J. Integr. Med. 2016 36 2 133 141 10.1007/BF02934162 27670874
    [Google Scholar]
  7. Wang X. Gao Y. Zhang J. Zhang H. Sun S. Su S. Kong D. Wang Q. Revealment study on the regulation of lipid metabolism by Lingguizhugan Decoction in heart failure treatment based on integrated lipidomics and proteomics. Biomed. Pharmacother. 2023 158 114066 10.1016/j.biopha.2022.114066 36528915
    [Google Scholar]
  8. Sun S. Xun G. Zhang J. Gao Y. Ge J. Liu F. Qian Q. Liu X. Tian Y. Sun Q. Wang Q. Wang X. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. J. Ethnopharmacol. 2022 295 115366 10.1016/j.jep.2022.115366 35551974
    [Google Scholar]
  9. Expert Consensus on the Clinical Application of Linggui Zhugan Granules (2023). Chin J. Integr Trad West Med. Liver Dis. 2024 34 3 289 296
    [Google Scholar]
  10. Li X. Li X. Wang L. Hou Y. Liu Y. Mao J. Zhang L. Li X. Advancing traditional Chinese medicine research through network pharmacology: Strategies for target identification, mechanism elucidation and innovative therapeutic applications. Am. J. Chin. Med. 2025 53 7 2021 2042 10.1142/S0192415X25500752 40884806
    [Google Scholar]
  11. Wang X. Mo J.J. Tang T.J. Ding R. Huang J.L. Effects and mechanism of Sig1R modulation by Ling Gui Zhu Gan Tang in inhibiting Ang II-induced cardiomyocyte hypertrophy. Chin J. Tradit Chin Med. 2024 49 3 754 762 10.110.19540/j.cnki.cjcmm.20231020.401 38621879
    [Google Scholar]
  12. Stefani C. Bruchez A.M. Rosasco M.G. Yoshida A.E. Fasano K.J. Levan P.F. Lorant A. Hubbard N.W. Oberst A. Stuart L.M. Lacy-Hulbert A. LITAF protects against pore-forming protein–induced cell death by promoting membrane repair. Sci. Immunol. 2024 9 91 eabq6541 10.1126/sciimmunol.abq6541 38181093
    [Google Scholar]
  13. Chen K. Tian J. Wang J. Jia Z. Zhang Q. Huang W. Zhao X. Gao Z. Gao Q. Zou J. Lipopolysaccharide-induced TNFα factor (LITAF) promotes inflammatory responses and activates apoptosis in zebrafish Danio rerio. Gene 2021 780 145487 10.1016/j.gene.2021.145487 33588039
    [Google Scholar]
  14. Xiang M. Yang F. Zhou Y. Li W. Zou Y. Ye P. Zhu L. Wang P.X. Chen M. LITAF acts as a novel regulator for pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2021 156 82 94 10.1016/j.yjmcc.2021.03.012 33823186
    [Google Scholar]
  15. Zhou P. Zhang M. Zhao X. Tang T. Wang X. Huang L. Kong Q. Wang L. Huang J. Exploring the mechanism of Ling-Gui-Zhu-Gan decoction in ventricular remodeling after acute myocardial infarction based on UPLC and in vivo experiments. Evid. Based Complement. Alternat. Med. 2022 2022 1 14 10.1155/2022/8593176 35615687
    [Google Scholar]
  16. Xu S.H. Wang S.S. Ren H. Zhao W.Z. Zhou P. Wang L. Huang J.L. Effect of Linggui Zhugan Decoction on myocardial fibrosis and Lats1/Yap signaling pathway in mice after myocardial infraction. Zhongguo Zhongyao Zazhi 2024 49 17 4702 4710 10.19540/j.cnki.cjcmm.20240409.401 39307818
    [Google Scholar]
  17. Xu S. Wang L. Huang J.L. Shi H. Hong X.H. Liu L. Effects of Linggui Zhugan Tang-containing serum on apoptosis in TGF-β1 induced rat cardiomyocyte H9c2 cell line. Pharmacol. Clin. Chin Mater. Med. 2016 32 3 4 8 10.13412/j.cnki.zyyl.2016.03.002
    [Google Scholar]
  18. Xu S. Huang J.L. Wang L. Shi H. Shao J. Hong X.H. Gan X.B. Liu L. Effects of serum containing Linggui Zhugan Decoction on TNF-α, IL-6, and IL-1β levels in TGF-β1-induced rat cardiomyocyte H9c2 cells. J. Yunnan Univ Tradit Chin Med. 2015 38 6 1 3 10.19288/j.cnki.issn.1000‑2723.2015.06.001
    [Google Scholar]
  19. Zhao X. Ding H. Ma Y. Wang L. Zhou P. Ling-Gui-Zhu-Gan decoction inhibits cardiomyocyte pyroptosis via the NLRP3/Caspase-1 signaling pathway. Tissue Cell 2024 91 102588 10.1016/j.tice.2024.102588 39442311
    [Google Scholar]
  20. Carreño J.E. Apablaza F. Ocaranza M.P. Jalil J.E. Cardiac hypertrophy: Molecular and cellular events. Rev. Esp. Cardiol. 2006 59 5 473 486 10.1157/13087900 16750145
    [Google Scholar]
  21. Zhu L. Li C. Liu Q. Xu W. Zhou X. Molecular biomarkers in cardiac hypertrophy. J. Cell. Mol. Med. 2019 23 3 1671 1677 10.1111/jcmm.14129 30648807
    [Google Scholar]
  22. Gallo G. Rubattu S. Cardiac damage in hypertension: From molecular mechanisms to novel therapeutic approaches. Int. J. Mol. Sci. 2025 26 12 5610 10.3390/ijms26125610 40565074
    [Google Scholar]
  23. Zou Y. Takano H. Akazawa H. Nagai T. Mizukami M. Komuro I. Molecular and cellular mechanisms of mechanical stress-induced cardiac hypertrophy. Endocr. J. 2002 49 1 1 13 10.1507/endocrj.49.1 12008744
    [Google Scholar]
  24. Shad M. Sheraz Shah F. Zulqarnain M. Usman M. Haider Z. Azhar J. Analyzing and identifying the molecular targets and regulators controlling cardiac hypertrophy progression. NUST J. Nat. Sci. 2021 5 2 10.53992/njns.v5i2.47
    [Google Scholar]
  25. Muñoz-Durango N. Fuentes C. Castillo A. González-Gómez L. Vecchiola A. Fardella C. Kalergis A. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: Molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int. J. Mol. Sci. 2016 17 7 797 10.3390/ijms17070797 27347925
    [Google Scholar]
  26. Carter K. Shah E. Waite J. Rana D. Zhao Z.Q. Pathophysiology of angiotensin II-mediated hypertension, cardiac hypertrophy, and failure: A perspective from macrophages. Cells 2024 13 23 2001 10.3390/cells13232001 39682749
    [Google Scholar]
  27. Bhullar S.K. Dhalla N.S. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells 2022 11 21 3336 10.3390/cells11213336 36359731
    [Google Scholar]
  28. Kolakovic A. Bundalo M. Djuric T. Koncar I. Stankovic A. Zivkovic M. The expression of renin-angiotensin system components in human carotid plaque. Vojnosanit. Pregl. 2024 81 4 231 241 10.2298/VSP221028014K
    [Google Scholar]
  29. Zhang J. Sun J. Gu X. Shen Y. Sun H. Transcriptome sequencing analysis reveals the molecular regulatory mechanism of myocardial hypertrophy induced by angiotensin II. Biochem. Pharmacol. 2024 229 116532 10.1016/j.bcp.2024.116532 39270943
    [Google Scholar]
  30. Nakagawa Y. Nishikimi T. Kuwahara K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides 2019 111 18 25 10.1016/j.peptides.2018.05.012 29859763
    [Google Scholar]
  31. Castiglione V. Aimo A. Vergaro G. Saccaro L. Passino C. Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022 27 2 625 643 10.1007/s10741‑021‑10105‑w 33852110
    [Google Scholar]
  32. Yeh H. Chang Y.M. Chang Y.W. Lu M.Y.J. Chen Y.H. Lee C.C. Chen C.C. Multiomic analyses reveal enriched glycolytic processes in β-myosin heavy chain-expressed cardiomyocytes in early cardiac hypertrophy. J. Mol. Cell. Cardiol. Plus 2022 1 100011 10.1016/j.jmccpl.2022.100011 39801720
    [Google Scholar]
  33. Yu Y. Cui J. Sun N. Liu H. Wang H. Yang J. Serum from acupuncture-treated asthmatic rats regulates p38-MAPK activation in airway smooth muscle cells. Am. J. Transl. Res. 2023 15 2 1063 1071 [PMID: 36915784
    [Google Scholar]
  34. Ge J. Wang D. He R. Zhu H. Wang Y. He S. Medicinal herb research: Serum pharmacological method and plasma pharmacological method. Biol. Pharm. Bull. 2010 33 9 1459 1465 10.1248/bpb.33.1459 20823557
    [Google Scholar]
  35. Pang J. Hou J. Research progress of traditional Chinese medicine in the treatment of chronic heart failure. J. Contemp Med. Pract 2024 6 8 183 188 10.53469/jcmp.2024.06(08).38
    [Google Scholar]
  36. Wang X. Gao Y. Tian Y. Liu X. Zhang G. Wang Q. Xie W. Liu K. Qian Q. Wang Q. Integrative serum metabolomics and network analysis on mechanisms exploration of Ling-Gui-Zhu-Gan Decoction on doxorubicin-induced heart failure mice. J. Ethnopharmacol. 2020 250 112397 10.1016/j.jep.2019.112397 31830550
    [Google Scholar]
  37. Lei J. Gong D. Duan L. Tang R. Gu W. Zhang F. Zhao Y. Zhang M. Yang X. Yu J. A multidimensional perspective on Poria cocos, an ancient fungal traditional Chinese medicine. J. Ethnopharmacol. 2025 348 119869 10.1016/j.jep.2025.119869 40280371
    [Google Scholar]
  38. Zhang X. Wang R. Jin R. Ji S. Tian M. Application of Poria Cocos in the treatment of heart disease. AIP Conf Proc 2022 2511 020023 10.1063/5.0094311
    [Google Scholar]
  39. Das G. Gonçalves S. Basilio Heredia J. Romano A. Jiménez-Ortega L.A. Gutiérrez-Grijalva E.P. Shin H.S. Patra J.K. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J. Funct. Foods 2022 97 105045 10.1016/j.jff.2022.105045
    [Google Scholar]
  40. Farazande M. Shabab S. Mahmoudabady M. Gholamnezhad Z. Effects of cinnamon on risk factors of cardiovascular diseases: A review paper. Ufuq-i Danish 2022 28 1 16 37 10.32598/hms.28.1.3626.1
    [Google Scholar]
  41. Singh K. Singh G. Bhushan B. Kumar S. Dhurandhar Y. Dixit P. A comprehensive pharmacological review of Atractylodes Macrocephala: Traditional uses, phytochemistry, pharmacokinetics, and therapeutic potential. Pharmacol. Res. Mod. Chin. Med. 2024 10 100394 10.1016/j.prmcm.2024.100394
    [Google Scholar]
  42. Shaikh S. Ahmad K. Lim J.H. Ahmad S.S. Lee E.J. Choi I. Biological insights and therapeutic potential of Glycyrrhiza uralensis and its bioactive compounds: An updated review. Arch. Pharm. Res. 2024 47 12 871 892 10.1007/s12272‑024‑01522‑0 39625590
    [Google Scholar]
  43. Yuan Q. Zhang H. Zhang Q. Wen H. Cui X. Peng G. Shan C. Chai C. Li W. Zuo C. Li X. Chemical profile analysis of Ling-Gui-Zhu-Gan decoction by LC–QTOF MS and simultaneous determination of nine major components using QAMS method. Chromatographia 2020 83 11 1371 1389 10.1007/s10337‑020‑03959‑z
    [Google Scholar]
  44. Li S. Gao Y. Wang X. Wang Z. Li N. Shang Y. Han F. Yu J. Qualitative and quantitative studies on chemical constituents of Ling‐gui‐zhu‐gan decoction: In vitro and in vivo. J. Sep. Sci. 2023 46 19 2300465 10.1002/jssc.202300465 37568255
    [Google Scholar]
  45. Ji B. Zhao Y. Yu P. Yang B. Zhou C. Yu Z. LC-ESI-MS/MS method for simultaneous determination of eleven bioactive compounds in rat plasma after oral administration of Ling-Gui-Zhu-Gan Decoction and its application to a pharmacokinetics study. Talanta 2018 190 450 459 10.1016/j.talanta.2018.08.020 30172532
    [Google Scholar]
  46. Cui Y. Yang Y. Tang X. Wang P. Cui J. Chen Y. Zhang T. Cinnamic acid alleviates hypertensive left ventricular hypertrophy by antagonizing the vasopressor activity and the pro-cardiac hypertrophic signaling of angiotensin II. Front. Pharmacol. 2025 16 1555991 10.3389/fphar.2025.1555991 40028160
    [Google Scholar]
  47. Lou H. Xie H. Lu N. Liu L. Liang W. Tian J. An G. Atractylenolide III protects cardiomyocytes from angiotensin II-induced hypertrophy and apoptosis. Curr. Top. Nutraceutical Res. 2021 19 4 445 451 10.37290/ctnr2641‑452X.19:445‑451
    [Google Scholar]
  48. Mo J. Zhou P. Chu Z. Zhao Y. Wang X. Liquiritin attenuates angiotensin II-induced cardiomyocyte hypertrophy via ATE1/TAK1-JNK1/2 pathway. Evid. Based Complement. Alternat. Med. 2022 2022 1 13 10.1155/2022/7861338 35341136
    [Google Scholar]
  49. Xu Z. Hu Z. Xu H. Zhang L. Li L. Wang Y. Zhu Y. Yang L. Hu D. Liquiritigenin alleviates doxorubicin-induced chronic heart failure via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway. Exp. Cell Res. 2022 411 2 113008 10.1016/j.yexcr.2022.113008 34990617
    [Google Scholar]
  50. Luan F. Lei Z. Peng X. Chen L. Peng L. Liu Y. Rao Z. Yang R. Zeng N. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem. Biol. Interact. 2022 368 110245 10.1016/j.cbi.2022.110245 36341777
    [Google Scholar]
  51. Fu J. Cheng L. Zhang J. Sun R. Yu M. Wu M. Li S. Cui X. Isoliquiritin targeting m5C RNA methylation improves mitophagy in doxorubicin-induced myocardial cardiotoxicity. Phytomedicine 2025 136 156293 10.1016/j.phymed.2024.156293 39657405
    [Google Scholar]
  52. Najmanová I. Doseděl M. Hrdina R. Anzenbacher P. Filipský T. Říha M. Mladěnka P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr. Top. Med. Chem. 2015 15 9 830 849 10.2174/1568026615666150220112437 25697565
    [Google Scholar]
  53. Cheng X. Huang L. The mechanism of the anti-cardiac hypertrophy effect of Glycyrrhizic acid is related to reducing STIM1-dependent store-operated calcium entry. Bull. Exp. Biol. Med. 2023 174 6 701 706 10.1007/s10517‑023‑05774‑6 37162628
    [Google Scholar]
  54. Liu Z. Zhou W. Liu Q. Huan Z. Wang Q. Ge X. Pachymic acid prevents hemorrhagic shock-induced cardiac injury by suppressing M1 macrophage polarization and NF-κB signaling pathway. Am. J. Chin. Med. 2023 51 8 2157 2173 10.1142/S0192415X23500921 37865871
    [Google Scholar]
  55. Sun C. Zhang X. Yu F. Liu C. Hu F. Liu L. Chen J. Wang J. Atractylenolide I. Atractylenolide I alleviates ischemia/reperfusion injury by preserving mitochondrial function and inhibiting caspase-3 activity. J. Int. Med. Res. 2021 49 2 0300060521993315 10.1177/0300060521993315 33641489
    [Google Scholar]
  56. Song X. Wang L. Liu M. Pan R. Song J. Kong J. Atractylenolide I.I. Atractylenolide II ameliorates myocardial fibrosis and oxidative stress in spontaneous hypertension rats. Technol. Health Care 2024 32 1 131 142 10.3233/THC‑220601 37483026
    [Google Scholar]
  57. Liang H. Zhang N. Zhao L. Wang Q. An Y. Wang H. Glycyrrhetinic acid alleviates atrial fibrillation by inhibiting the expression of PIM1. Chem. Biol. Drug Des. 2024 103 2 14448 10.1111/cbdd.14448
    [Google Scholar]
  58. Guan J. Zhang Z.Y. Sun J.H. Wang X.P. Zhou Z.Q. Qin L. LITAF inhibits colorectal cancer stemness and metastatic behavior by regulating FOXO1-mediated SIRT1 expression. Clin. Exp. Metastasis 2023 40 4 309 320 10.1007/s10585‑023‑10213‑x 37266842
    [Google Scholar]
  59. Zou J. Guo P. Lv N. Huang D. Lipopolysaccharide-induced tumor necrosis factor-α factor enhances inflammation and is associated with cancer.(Review) Mol. Med. Rep. 2015 12 5 6399 6404 10.3892/mmr.2015.4243 26324337
    [Google Scholar]
  60. Huck O. You J. Han X. Cai B. Panek J. Amar S. Reduction of articular and systemic inflammation by Kava-241 in a porphyromonas gingivalis-induced arthritis murine model. Infect. Immun. 2018 86 9 e00356 18 10.1128/IAI.00356‑18 29914930
    [Google Scholar]
  61. Li W. Zhou W. Li X. Jiang X. Deng Y. Shen J. Xie H. Tan G. Huang L. Zhang H. LITAF promotes atherosclerotic plaque formation by stimulating the NF-κB inflammatory pathway. Curr. Med. Sci. 2023 43 6 1201 1205 10.1007/s11596‑023‑2802‑x 37848750
    [Google Scholar]
  62. Moshal K.S. Roder K. Kabakov A.Y. Werdich A.A. Chiang D.Y.E. Turan N.N. Xie A. Kim T.Y. Cooper L.L. Lu Y. Zhong M. Li W. Terentyev D. Choi B.R. Karma A. MacRae C.A. Koren G. LITAF (Lipopolysaccharide-Induced Tumor Necrosis Factor) regulates cardiac L-Type calcium channels by modulating NEDD (neural precursor cell expressed developmentally Downregulated Protein) 4-1 Ubiquitin Ligase. Circ. Genom. Precis. Med. 2019 12 9 002641 10.1161/CIRCGEN.119.002641 31462068
    [Google Scholar]
  63. Turan N.N. Moshal K.S. Roder K. Baggett B.C. Kabakov A.Y. Dhakal S. Teramoto R. Chiang D.Y.E. Zhong M. Xie A. Lu Y. Dudley S.C. MacRae C.A. Karma A. Koren G. The endosomal trafficking regulator LITAF controls the cardiac Nav1.5 channel via the ubiquitin ligase NEDD4-2. J. Biol. Chem. 2020 295 52 18148 18159 10.1074/jbc.RA120.015216 33093176
    [Google Scholar]
  64. Turan N.N. Moshal K.S. Roder K. Xie A. Lu Y. Werdich A. MacRae C. Koren G. Cardiac Nav1.5 channel is regulated by LITAF. FASEB J. 2018 32 S1 10.1096/fasebj.2018.32.1_supplement.533.81
    [Google Scholar]
  65. Liu T. Zhou H.J. Min W. ASK family in cardiovascular biology and medicine. Adv. Biol. Regul. 2017 66 54 62 10.1016/j.jbior.2017.10.011 29107568
    [Google Scholar]
  66. Son Y. Cheong Y.K. Kim N.H. Chung H.T. Kang D.G. Pae H.O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011 2011 1 6 10.1155/2011/792639 21637379
    [Google Scholar]
  67. Thakur D. Nandi A. Gaur Y.K. Chandrabose K. Waiker D.K. Gupta G.D. Sharma K. Updated insights on ASK1 signaling: Mechanisms, regulation, and therapeutic potential in diseases. Mol. Cell. Biochem. 2025 10.1007/s11010‑025‑05330‑y 40515958
    [Google Scholar]
  68. Meijles D.N. Cull J.J. Markou T. Cooper S.T.E. Haines Z.H.R. Fuller S.J. O’Gara P. Sheppard M.N. Harding S.E. Sugden P.H. Clerk A. Redox regulation of cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) controls p38-MAPK (Mitogen-Activated Protein Kinase) and orchestrates cardiac remodeling to hypertension. Hypertension 2020 76 4 1208 1218 10.1161/HYPERTENSIONAHA.119.14556 32903101
    [Google Scholar]
  69. Jiang L. Ren L. Guo X. Zhao J. Zhang H. Chen S. Le S. Liu H. Ye P. Chen M. Xia J. Dual-specificity Phosphatase 9 protects against Cardiac Hypertrophy by targeting ASK1. Int. J. Biol. Sci. 2021 17 9 2193 2204 10.7150/ijbs.57130 34239349
    [Google Scholar]
  70. Ogier J.M. Nayagam B.A. Lockhart P.J. ASK1 inhibition: A therapeutic strategy with multi-system benefits. J. Mol. Med. 2020 98 3 335 348 10.1007/s00109‑020‑01878‑y 32060587
    [Google Scholar]
  71. Ma Q. Liu Y. Chen L. JIP3 deficiency attenuates cardiac hypertrophy by suppression of JNK pathway. Biochem. Biophys. Res. Commun. 2018 503 1 1 7 10.1016/j.bbrc.2018.03.208 29604277
    [Google Scholar]
  72. Turner N.A. Blythe N.M. Cardiac fibroblast p38 MAPK: A critical regulator of myocardial remodeling. J. Cardiovasc. Dev. Dis. 2019 6 3 27 10.3390/jcdd6030027 31394846
    [Google Scholar]
  73. Feng H. Cao J. Zhang G. Wang Y. Kaempferol attenuates cardiac hypertrophy via regulation of ASK1/MAPK signaling pathway and oxidative stress. Planta Med. 2017 83 10 837 845 10.1055/s‑0043‑103415 28219095
    [Google Scholar]
  74. Pang Y. Wu L. Xia J. Xu X. Gao C. Hou L. Jiang L. Trim38 attenuates pressure overload induced cardiac hypertrophy by suppressing the TAK1/JNK/P38 signaling pathway. Int. J. Mol. Med. 2025 55 6 1 15 10.3892/ijmm.2025.5539 40314083
    [Google Scholar]
  75. Pellieux C. Sauthier T. Aubert J.F. Brunner H.R. Pedrazzini T. Angiotensin II-induced cardiac hypertrophy is associated with associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. J. Hypertens. 2000 18 9 1307 1317 10.1097/00004872‑200018090‑00017 10994762
    [Google Scholar]
  76. Zhang Y. Zhang L. Zhang Y. Xu J.J. Sun L.L. Li S.Z. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-κB and MAPK signaling pathway. Biomed. Pharmacother. 2016 84 1337 1349 10.1016/j.biopha.2016.10.036 27810791
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073421853251128081254
Loading
/content/journals/cchts/10.2174/0113862073421853251128081254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test