Skip to content
2000
image of Identification of a Cuproptosis-Related Molecular Signature for Predicting Biochemical Recurrence in Prostate Cancer

Abstract

Background

This study aimed to develop and validate a Cuproptosis-Related Gene (CRG) signature for predicting Biochemical Recurrence-Free Survival (BCRFS) and characterizing the Tumor Immune Microenvironment (TIME) in Prostate Cancer (PCa).

Methods

Transcriptomic and clinical data were collected from TCGA (n=405) and GEO (GSE70770, n=203). Consensus clustering based on 10 CRGs defined molecular subtypes. Differentially expressed genes between clusters were subjected to LASSO Cox regression to construct a prognostic signature in the TCGA cohort, followed by validation in GEO and combined cohorts. Quantitative real-time polymerase chain reaction (qRT-PCR) and Immunohistochemistry (IHC) were conducted for experimental validation.

Results

Two CRG-based subtypes were identified, characterized by distinct clinicopathological features, immune checkpoint expression, and BCRFS. A six-gene signature (CALML5, MMP11, UBE2C, ANPEP, TMEM59L, COMP) stratified patients into high- and low-risk groups with significantly different BCRFS (log-rank <0.001). The model showed good predictive accuracy (AUCs 0.717–0.837 at 1 year, 0.728–0.771 at 3 years, 0.683–0.695 at 5 years) and remained independent of clinicopathological factors. High-risk patients exhibited elevated immune/stromal scores, altered immune infiltration, and higher immune checkpoint expression. qRT-PCR confirmed upregulation of CALML5, MMP11, UBE2C, and COMP in PCa cell lines, while IHC validated differential protein expression of all six genes between PCa and BPH tissues (all <0.05).

Discussion

This six-gene CRG signature predicts BCRFS and reflects immune heterogeneity in PCa. Its integration into prognostic models may guide personalized management and inform immunotherapy strategies, warranting further validation in prospective clinical studies.

Conclusion

This study initially identified two cuproptosis-related molecules based on the expression patterns of cuproptosis-related genes. In addition, we developed a new cuproptosis-related molecular signature with great predictive performance for BCRFS and tumor immune environment using six DERRGs (including CALML5, MMP11, UBE2C, ANPEP, TMEM59L, COMP). These findings would be conducive to a deeper cognition of the potential mechanism of cuproptosis of PCa.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073412459251117113248
2026-01-09
2026-01-29
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Ke Z.B. You Q. Sun J.B. Zhu J.M. Li X.D. Chen D.N. Su L. Zheng Q.S. Wei Y. Xue X.Y. Xu N. A novel ferroptosis-based molecular signature associated with biochemical recurrence-free survival and tumor immune microenvironment of prostate cancer. Front. Cell Dev. Biol. 2022 9 774625 10.3389/fcell.2021.774625 35071228
    [Google Scholar]
  3. Van den Broeck T. van den Bergh R.C.N. Arfi N. Gross T. Moris L. Briers E. Cumberbatch M. De Santis M. Tilki D. Fanti S. Fossati N. Gillessen S. Grummet J.P. Henry A.M. Lardas M. Liew M. Rouvière O. Pecanka J. Mason M.D. Schoots I.G. van Der Kwast T.H. van Der Poel H.G. Wiegel T. Willemse P.P.M. Yuan Y. Lam T.B. Cornford P. Mottet N. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: A systematic review. Eur. Urol. 2019 75 6 967 987 10.1016/j.eururo.2018.10.011 30342843
    [Google Scholar]
  4. Carranza-Aranda A.S. Santerre A. Segura-Cabrera A. Cárdenas-Vargas A. Martínez-Velázquez M. Hernández-Gutiérrez R. Herrera-Rodríguez S.E. Chrysin: A potential antiandrogen ligand to mutated androgen receptors in prostate cancer. Curr. Mol. Pharmacol. 2024 17 e18761429350210 39806979
    [Google Scholar]
  5. Lv Z. Shi Y. Wu H. Cao K. Liu X. Wang C. Novel circular RNA CircUBAP2 drives tumor progression by regulating the miR-143/TFAP2B axis in prostate cancer. Protein Pept. Lett. 2024 31 1 61 73 10.2174/0109298665268943231103114654 37962045
    [Google Scholar]
  6. Ruiz L.M. Libedinsky A. Elorza A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021 8 711227 10.3389/fmolb.2021.711227 34504870
    [Google Scholar]
  7. Oliveri V. Selective targeting of cancer cells by copper ionophores: An overview. Front. Mol. Biosci. 2022 9 841814 10.3389/fmolb.2022.841814 35309510
    [Google Scholar]
  8. Gupta S.K. Shukla V.K. Vaidya M.P. Roy S.K. Gupta S. Serum and tissue trace nlms in colorectal cancer. J. Surg. Oncol. 1993 52 3 172 175 10.1002/jso.2930520311 8441275
    [Google Scholar]
  9. Sharma K. Mittal D.K. Kesarwani R.C. Kamboj V.P. Chowdhery, Diagnostic and prognostic significance of serum and tissue trace nlms in breast malignancy. Indian J. Med. Sci. 1994 48 10 227 232 7829172
    [Google Scholar]
  10. Lelièvre P. Sancey L. Coll J.L. Deniaud A. Busser B. The Multifaceted roles of copper in cancer: A trace metal nlm with dysregulated metabolism, but also a target or a bullet for therapy. Cancers 2020 12 12 3594 10.3390/cancers12123594 33271772
    [Google Scholar]
  11. Tsvetkov P. Coy S. Petrova B. Dreishpoon M. Verma A. Abdusamad M. Rossen J. Joesch-Cohen L. Humeidi R. Spangler R.D. Eaton J.K. Frenkel E. Kocak M. Corsello S.M. Lutsenko S. Kanarek N. Santagata S. Golub T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022 375 6586 1254 1261 10.1126/science.abf0529 35298263
    [Google Scholar]
  12. Saleh S.A.K. Adly H.M. Abdelkhaliq A.A. Nassir A.M. Serum levels of Selenium, Zinc, Copper, Manganese, and iron in prostate cancer patients. Curr. Urol. 2020 14 1 44 49 10.1159/000499261 32398996
    [Google Scholar]
  13. Li H. Zu X. Hu J. Xiao Z. Cai Z. Gao N. Chen J. Cuproptosis depicts tumor microenvironment phenotypes and predicts precision immunotherapy and prognosis in bladder carcinoma. Front. Immunol. 2022 13 964393 10.3389/fimmu.2022.964393 36211344
    [Google Scholar]
  14. Nie W. Zheng L. Shen Y. Zhang Y. Teng H. Zhong R. Cheng L. Tao G. Han B. Chu T. Zhong H. Zhang X. Tumor immune dysfunction and exclusion evaluation and chemoimmunotherapy response prediction in lung adenocarcinoma using pathomic-based approach. Chin. Med. J. (Engl.) 2025 138 3 346 348 10.1097/CM9.0000000000003376 39602314
    [Google Scholar]
  15. Escaff S. Fernández J.M. González L.O. Suárez A. González-Reyes S. González J.M. Vizoso F.J. Study of matrix metalloproteinases and their inhibitors in prostate cancer. Br. J. Cancer 2010 102 5 922 929 10.1038/sj.bjc.6605569 20160732
    [Google Scholar]
  16. Hsieh C.Y. Chou Y.E. Lin C.Y. Wang S.S. Chien M.H. Tang C.H. Lin J.C. Wen Y.C. Yang S.F. Impact of matrix metalloproteinase-11 gene polymorphisms on biochemical recurrence and clinicopathological characteristics of prostate cancer. Int. J. Environ. Res. Public Health 2020 17 22 8603 10.3390/ijerph17228603 33228130
    [Google Scholar]
  17. Chen Z. Zhang C. Wu D. Chen H. Rorick A. Zhang X. Wang Q. Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J. 2011 30 12 2405 2419 10.1038/emboj.2011.154 21556051
    [Google Scholar]
  18. Hu J. Wu X. Yang C. Rashid K. Ma C. Hu M. Ding Q. Jiang H. Anticancer effect of icaritin on prostate cancer via regulating miR‐381‐3p and its target gene UBE2C. Cancer Med. 2019 8 18 7833 7845 10.1002/cam4.2630 31646760
    [Google Scholar]
  19. Wang H. Zhang C. Rorick A. Wu D. Chiu M. Thomas-Ahner J. Chen Z. Chen H. Clinton S.K. Chan K.K. Wang Q. CCI-779 inhibits cell-cycle G2-M progression and invasion of castration-resistant prostate cancer via attenuation of UBE2C transcription and mRNA stability. Cancer Res. 2011 71 14 4866 4876 10.1158/0008‑5472.CAN‑10‑4576 21593191
    [Google Scholar]
  20. Sørensen K.D. Abildgaard M.O. Haldrup C. Ulhøi B.P. Kristensen H. Strand S. Parker C. Høyer S. Borre M. Ørntoft T.F. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer. Br. J. Cancer 2013 108 2 420 428 10.1038/bjc.2012.549 23322201
    [Google Scholar]
  21. Debald M. Schildberg F.A. Linke A. Walgenbach K. Kuhn W. Hartmann G. Walgenbach-Brünagel G. Specific expression of k63-linked ubiquitination of calmodulin-like protein 5 in breast cancer of premenopausal patients. J. Cancer Res. Clin. Oncol. 2013 139 12 2125 2132 10.1007/s00432‑013‑1541‑y 24146193
    [Google Scholar]
  22. Kour B. Shukla N. Bhargava H. Sharma D. Sharma A. Singh A. Valadi J. Sadasukhi T.C. Vuree S. Suravajhala P. Identification of plausible candidates in prostate cancer using integrated machine learning approaches. Curr. Genomics 2023 24 5 287 306 10.2174/0113892029240239231109082805 38235353
    [Google Scholar]
  23. Safi R. Nelson E.R. Chitneni S.K. Franz K.J. George D.J. Zalutsky M.R. McDonnell D.P. Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res. 2014 74 20 5819 5831 10.1158/0008‑5472.CAN‑13‑3527 25320179
    [Google Scholar]
  24. Bakthavatsalam S. Sleeper M.L. Dharani A. George D.J. Zhang T. Franz K.J. Leveraging γ‐Glutamyl transferase to direct cytotoxicity of copper dithiocarbamates against prostate cancer cells. Angew. Chem. Int. Ed. 2018 57 39 12780 12784 10.1002/anie.201807582 30025197
    [Google Scholar]
  25. Denoyer D. Pearson H.B. Clatworthy S.A.S. Smith Z.M. Francis P.S. Llanos R.M. Volitakis I. Phillips W.A. Meggyesy P.M. Masaldan S. Cater M.A. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget 2016 7 24 37064 37080 10.18632/oncotarget.9245 27175597
    [Google Scholar]
  26. Kwon E.D. Drake C.G. Scher H.I. Fizazi K. Bossi A. van den Eertwegh A.J.M. Krainer M. Houede N. Santos R. Mahammedi H. Ng S. Maio M. Franke F.A. Sundar S. Agarwal N. Bergman A.M. Ciuleanu T.E. Korbenfeld E. Sengeløv L. Hansen S. Logothetis C. Beer T.M. McHenry M.B. Gagnier P. Liu D. Gerritsen W.R. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014 15 7 700 712 10.1016/S1470‑2045(14)70189‑5 24831977
    [Google Scholar]
  27. Beer T.M. Kwon E.D. Drake C.G. Fizazi K. Logothetis C. Gravis G. Ganju V. Polikoff J. Saad F. Humanski P. Piulats J.M. Gonzalez Mella P. Ng S.S. Jaeger D. Parnis F.X. Franke F.A. Puente J. Carvajal R. Sengeløv L. McHenry M.B. Varma A. van den Eertwegh A.J. Gerritsen W. Randomized, double-blind, phase III trial of Ipilimumab Versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 2017 35 1 40 47 10.1200/JCO.2016.69.1584 28034081
    [Google Scholar]
  28. Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Powderly J.D. Carvajal R.D. Sosman J.A. Atkins M.B. Leming P.D. Spigel D.R. Antonia S.J. Horn L. Drake C.G. Pardoll D.M. Chen L. Sharfman W.H. Anders R.A. Taube J.M. McMiller T.L. Xu H. Korman A.J. Jure-Kunkel M. Agrawal S. McDonald D. Kollia G.D. Gupta A. Wigginton J.M. Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012 366 26 2443 2454 10.1056/NEJMoa1200690 22658127
    [Google Scholar]
  29. Hansen A.R. Massard C. Ott P.A. Haas N.B. Lopez J.S. Ejadi S. Wallmark J.M. Keam B. Delord J.P. Aggarwal R. Gould M. Yang P. Keefe S.M. Piha-Paul S.A. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the KEYNOTE-028 study. Ann. Oncol. 2018 29 8 1807 1813 10.1093/annonc/mdy232 29992241
    [Google Scholar]
  30. Cha H.R. Lee J.H. Ponnazhagan S. Revisiting immunotherapy: A focus on prostate cancer. Cancer Res. 2020 80 8 1615 1623 10.1158/0008‑5472.CAN‑19‑2948 32066566
    [Google Scholar]
  31. Qi Z. Xu Z. Zhang L. Zou Y. Li J. Yan W. Li C. Liu N. Wu H. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment. Nat. Commun. 2022 13 1 182 10.1038/s41467‑021‑27833‑0 35013322
    [Google Scholar]
  32. Nair S.S. Weil R. Dovey Z. Davis A. Tewari A.K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North Am. 2020 47 4 e17 e54 10.1016/j.ucl.2020.10.005 33446323
    [Google Scholar]
  33. Charoentong P. Finotello F. Angelova M. Mayer C. Efremova M. Rieder D. Hackl H. Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017 18 1 248 262 10.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  34. Chen F. Zhang Y. Bossé D. Lalani A.K.A. Hakimi A.A. Hsieh J.J. Choueiri T.K. Gibbons D.L. Ittmann M. Creighton C.J. Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nat. Commun. 2017 8 1 199 10.1038/s41467‑017‑00289‑x 28775315
    [Google Scholar]
  35. Chen P.L. Roh W. Reuben A. Cooper Z.A. Spencer C.N. Prieto P.A. Miller J.P. Bassett R.L. Gopalakrishnan V. Wani K. De Macedo M.P. Austin-Breneman J.L. Jiang H. Chang Q. Reddy S.M. Chen W.S. Tetzlaff M.T. Broaddus R.J. Davies M.A. Gershenwald J.E. Haydu L. Lazar A.J. Patel S.P. Hwu P. Hwu W.J. Diab A. Glitza I.C. Woodman S.E. Vence L.M. Wistuba I.I. Amaria R.N. Kwong L.N. Prieto V. Davis R.E. Ma W. Overwijk W.W. Sharpe A.H. Hu J. Futreal P.A. Blando J. Sharma P. Allison J.P. Chin L. Wargo J.A. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016 6 8 827 837 10.1158/2159‑8290.CD‑15‑1545 27301722
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073412459251117113248
Loading
/content/journals/cchts/10.2174/0113862073412459251117113248
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test