Skip to content
2000
image of Multi-Pathway and Multi-Gene Molecular Mechanisms of Huoxue San in Fracture Healing and Blood Stasis

Abstract

Introduction

Huoxue San (HXS) is a traditional Chinese medicinal formulation widely used to treat bone fractures and blood stasis. Comprising seven herbs—Siphonostegia chinensis Benth, (L.) Schrad, Scutellaria barbata D.Don, Polygonum cuspidatum Sieb. et Zucc, Arisaema erubescens (Wall.) Schott, Phellodendron chinense Schneid, and Eupolyphaga sinensis Walker—HXS has been administered at Nanjing Chinese Medicine Hospital for over 50 years. It is effective in promoting fracture healing, supporting soft tissue repair, and rarely causing adverse reactions such as skin allergies. The present study aimed to elucidate the molecular mechanisms underlying HXS’s therapeutic effects.

Methods

Ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC–Q-TOF MS) was used to identify HXS components absorbed into the bloodstream. Network pharmacology, molecular docking, and molecular dynamics simulations were then conducted to explore the active ingredients and their regulatory mechanisms in fracture healing and blood stasis.

Results

Transdermal absorption tests identified 20 active compounds from HXS. Network pharmacology analyses using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform highlighted vanillic acid, demethyleneberberine, palmatine hydrochloride, luteolin, apigenin, and wogonin as key active ingredients. Molecular dynamics simulations further validated the stability, conformational changes, and interactions of these compounds with their target proteins.

Discussion

Analysis of the transdermal absorption samples revealed 291 potential active targets for HXS in treating fractures and blood stasis, of which 159 were common to both conditions. Protein–protein interaction (PPI) network analysis identified core targets including AKT1, ALB, EGFR, STAT3, and CTNNB1. Molecular docking confirmed strong binding interactions between HXS compounds and these core targets, while molecular dynamics simulations validated the stability and mechanistic plausibility of these interactions.

Conclusion

This study provides a systematic elucidation of HXS’s molecular mechanisms in fracture healing and blood stasis. Identification of active compounds, core targets, and their interactions offers a scientific basis for the therapeutic effects of HXS and supports the rational development of herbal-medicine-based interventions for fracture management and blood stasis treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073405436251129074006
2026-01-09
2026-01-29
Loading full text...

Full text loading...

References

  1. Li Y. Liu F. Li S. Huang W. Zhou S. Han Y. Liu L. Li Y. Yin Z. Yin Z. Luteolin regulating synthesis and catabolism of osteoarthritis chondrocytes via activating autophagy. Heliyon 2024 10 11 31028 10.1016/j.heliyon.2024.e31028 38882274
    [Google Scholar]
  2. Shang L. Wang Y. Li J. Zhou F. Xiao K. Liu Y. Zhang M. Wang S. Yang S. Mechanism of Sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation J. Ethnopharmacol. 2023 302 Pt A 115876 10.1016/j.jep.2022.115876 36343798
    [Google Scholar]
  3. Mu J. Li Y. Chen Q. Xiao Y. Hu M. He Z. Zeng J. Ding Y. Song P. He X. Yang X. Zhang X. Revealing the molecular mechanism of baohuoside I for the treatment of breast cancer based on network pharmacology and molecular docking. J. Ethnopharmacol. 2025 337 Pt 3 118918 10.1016/j.jep.2024.118918 39396715
    [Google Scholar]
  4. Yu X. Qin W. Cai H. Ren C. Huang S. Lin X. Tang L. Shan Z. AL-Ameer, W.H.A.; Wang, L.; Yan, H.; Chen, M. Analyzing the molecular mechanism of xuefuzhuyu decoction in the treatment of pulmonary hypertension with network pharmacology and bioinformatics and verifying molecular docking. Comput. Biol. Med. 2024 169 107863 10.1016/j.compbiomed.2023.107863 38199208
    [Google Scholar]
  5. Saito K. Goda R. Arai K. Asahina K. Kawabata M. Uchiyama H. Andou T. Shimizu H. Takahara K. Kakehi M. Yamauchi S. Nitta S. Suga T. Fujita H. Ishikawa R. Saito Y. Interlaboratory evaluation of LC-MS-based biomarker assays. Bioanalysis 2024 16 6 389 402 10.4155/bio‑2023‑0173 38334082
    [Google Scholar]
  6. Werth E.G. Roos D. Philip E.T. Immunocapture LC-MS methods for pharmacokinetics of large molecule drugs. Bioanalysis 2024 16 7 165 177 10.4155/bio‑2023‑0261 38348660
    [Google Scholar]
  7. Abro A. Azam S.S. Binding free energy based analysis of arsenic (+ 3 oxidation state) methyltransferase with S-adenosylmethionine. J. Mol. Liq. 2016 220 375 382 10.1016/j.molliq.2016.04.109
    [Google Scholar]
  8. Sadaqat M. Qasim M. Tahir ul Qamar, M.; Masoud, M.S.; Ashfaq, U.A.; Noor, F.; Fatima, K.; Allemailem, K.S.; Alrumaihi, F.; Almatroudi, A. Advanced network pharmacology study reveals multi-pathway and multi-gene regulatory molecular mechanism of Bacopa monnieri in liver cancer based on data mining, molecular modeling, and microarray data analysis. Comput. Biol. Med. 2023 161 107059 10.1016/j.compbiomed.2023.107059 37244150
    [Google Scholar]
  9. Liu K. Cheng C. Yan J. Chi F. Wang W. Shen F. Zhang J. Zhang M. Hou Y. Bai G. Polydatin mitigates thrombosis by inhibiting PHD2-induced proline hydroxylation on collagen, reducing platelet adhesion. Phytomedicine 2025 138 156392 10.1016/j.phymed.2025.156392 39826283
    [Google Scholar]
  10. Kim B.S. Jin S. Park J.Y. Kim S.Y. Scoping review of the medicinal effects of Eupolyphaga sinensis Walker and the underlying mechanisms. J. Ethnopharmacol. 2022 296 115454 10.1016/j.jep.2022.115454 35700853
    [Google Scholar]
  11. Wang L. Chen W. Li M. Zhang F. Chen K. Chen W. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. J. Ethnopharmacol. 2020 254 112260 10.1016/j.jep.2019.112260 31577937
    [Google Scholar]
  12. Liu X.Q. Wu H. Yu H.L. Zhao T.F. Pan Y.Z. Shi R.J. Purification of a lectin from Arisaema erubescens (Wall.) Schott and its pro-inflammatory effects. Molecules 2011 16 11 9480 9494 10.3390/molecules16119480 22083235
    [Google Scholar]
  13. Si Y. Li X. Guo T. Wei W. Zhang J. Jia A. Wang Y. Zhao A. Chang J. Feng S. Isolation and characterization of phellodendronoside A, a new isoquinoline alkaloid glycoside with anti-inflammatory activity from Phellodendron chinense Schneid. Fitoterapia 2021 154 105021 10.1016/j.fitote.2021.105021 34403776
    [Google Scholar]
  14. Qin Z. Han Y. Du Y. Zhang Y. Bian Y. Wang R. Wang H. Guo F. Yuan H. Pan Y. Jin J. Zhou Q. Wang Y. Han F. Xu Y. Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. Sci. China Life Sci. 2024 67 5 1010 1026 10.1007/s11427‑023‑2454‑9 38489007
    [Google Scholar]
  15. Gu S. Wang J. Yu S. Zhang S. Gao T. Yan D. Xie R. Gu M. Yu M. Zhang Z. Lou Z. Ding X. Chen Y. Li C. Berberine ameliorates nonalcoholic fatty liver disease-induced bone loss by inhibiting ferroptosis. Bone 2024 185 117114 10.1016/j.bone.2024.117114 38723878
    [Google Scholar]
  16. Mukherjee A. Rotwein P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol. Cell. Biol. 2012 32 2 490 500 10.1128/MCB.06361‑11 22064480
    [Google Scholar]
  17. Feng Q. Zhao Q. Qu S. Zhao Y. Li K. Yuan B. Chang Q. Xu J. Wang H. Zhu Y. Fu K. Liu J. Qianggan Ruanjian Pill ameliorates liver fibrosis through regulation of the TGF-β1/Smad and PI3K/AKT signalling pathways. J. Ethnopharmacol. 2025 337 Pt 2 118893 10.1016/j.jep.2024.118893 39362322
    [Google Scholar]
  18. Jiang X.Y. Wang Q. Zhang Y. Chen Y. Wu L.F. Association of high serum chemerin with bone mineral density loss and osteoporotic fracture in elderly Chinese women. Int. J. Womens Health 2022 14 107 118 10.2147/IJWH.S337985 35140527
    [Google Scholar]
  19. Zhu L. Wang Y. Huang X. Liu X. Ye B. He Y. Yu H. Lv W. Wang L. Hu J. Schizandrin A induces non-small cell lung cancer apoptosis by suppressing the epidermal growth factor receptor activation. Cancer Med. 2024 13 2 e6942 10.1002/cam4.6942 38376003
    [Google Scholar]
  20. Zhu C. Zhu Q. Wu Z. Yin Y. Kang D. Lu S. Liu P. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR‐related pathways in prostate cancer. J. Cell. Physiol. 2018 233 2 1104 1119 10.1002/jcp.25968 28422286
    [Google Scholar]
  21. Wang Y. Hang K. Wu X. Ying L. Wang Z. Ling Z. Hu H. Pan Z. Zou X. SLAMF8 regulates osteogenesis and adipogenesis of bone marrow mesenchymal stem cells via S100A6/Wnt/β-catenin signaling pathway. Stem Cell Res. Ther. 2024 15 1 349 10.1186/s13287‑024‑03964‑1 39380096
    [Google Scholar]
  22. Fang B. Chen X. Wu M. Kong H. Chu G. Zhou Z. Zhang C. Chen B. Luteolin inhibits angiogenesis of the M2 like TAMs via the downregulation of hypoxia inducible factor 1α and the STAT3 signalling pathway under hypoxia. Mol. Med. Rep. 2018 18 3 2914 2922 10.3892/mmr.2018.9250 30015852
    [Google Scholar]
  23. Hirano T. Ishihara K. Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000 19 21 2548 2556 10.1038/sj.onc.1203551 10851053
    [Google Scholar]
  24. Jin M. Yi X. Zhu X. Hu W. Wang S. Chen Q. Yang W. Li Y. Li S. Peng Q. Pan M. Gao Y. Xu S. Zhang Y. Zhou S. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience 2024 27 2 108912 10.1016/j.isci.2024.108912 38323006
    [Google Scholar]
  25. Zheng L. Pan C. Ma D. Shang Q. Hu T. Zhang T. Kang Q. Hu X. Cao S. Wang L. Luo H. Wang J. Overexpression of Nrf2 in bone marrow mesenchymal stem cells promotes B-cell acute lymphoblastic leukemia cells invasion and extramedullary organ infiltration through stimulation of the SDF-1/CXCR4 axis. Front. Pharmacol. 2024 15 1393482 10.3389/fphar.2024.1393482 39081954
    [Google Scholar]
  26. Wu W. Liang D. Expression and related mechanisms of miR-330-3p and S100B in an animal model of cartilage injury. J. Int. Med. Res. 2021 49 9 03000605211039471 10.1177/03000605211039471 34590918
    [Google Scholar]
  27. Ami S. Yuji I. Takanori M. Sho-Ichi Y. Aqueous extract of glucoraphanin-rich broccoli sprouts inhibits formation of advanced glycation end products and attenuates inflammatory reactions in endothelial cells. Evid. Based Complement. Alternat. Med. 2018 2018 9823141 10.1155/2018/9823141 30174716
    [Google Scholar]
  28. Cetin A. Some flavolignans as potent Sars-Cov-2 inhibitors via Molecular Docking, Molecular Dynamic Simulations and ADME Analysis. Curr. Computeraided Drug Des. 2022 18 5 337 346 10.2174/1573409918666220816113516 35975852
    [Google Scholar]
  29. Wu Y. Zhu Y. Xie N. Wang H. Wang F. Zhou J. Qu F. A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis. PLoS One 2022 17 2 0263614 10.1371/journal.pone.0263614 35130311
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073405436251129074006
Loading
/content/journals/cchts/10.2174/0113862073405436251129074006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test