Skip to content
2000
image of Acupoint Catgut Embedding Alleviates Neuropathic Pain by Regulating Sigma-1 Receptor Expression

Abstract

Introduction

Acupoint Catgut Embedding (ACE), also known as acupuncture catgut implantation, exerts analgesic effects by inhibiting Sig-1R. This study aimed to evaluate the modulatory effect of ACE on Sig-1R and its mechanism of action in alleviating nerve pain.

Methods

We assessed behavioral changes in mechanosensitive and thermosensitive pain in rats. Spinal cord tissue damage was examined using HE staining, while apoptosis was evaluated through TUNEL staining. Sig-1R expression in spinal cord tissue was analyzed immunohistochemistry.

Results

ACE and Sig-1R antagonists significantly reduced paw withdrawal frequency (PWF), decreased the expression of Bax and cleaved caspase-3 proteins, and alleviated morphological damage in spinal cord cells. They also increased the expression of Bcl-2 and prolonged paw withdrawal latency (PWL) in rats. Additionally, ACE and Sig-1R antagonists reduced levels of TNF-α, IL-1β, and IL-6, as well as malondialdehyde (MDA), while elevating levels of Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx) in both serum and spinal cord tissues. Furthermore, they downregulated the protein expression of p-ERK1/2, p38 MAPK, and Nox2, reduced the number of Th1 and Th17 cells, and increased the number of Th2 and Treg cells.

Discussion

Currently, the mechanism of action of ACE on neuropathic pain caused by peripheral nerve injury based on Sig-1R is still unclear. This study evaluated the mechanism by which ACE alleviates neuralgia by regulating the expression of Sig-1R in the spinal cord. In future work, we aim to conduct additional experiments to determine the precise localization of T cells within the spinal cord and to further investigate their direct interactions with glial cells.

Conclusion

ACE effectively alleviates nerve pain by modulating Sig-1R expression in the spinal cord, thereby regulating inflammatory responses, oxidative stress, and associated signaling pathways.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073377826250728055125
2025-08-15
2025-11-29
Loading full text...

Full text loading...

References

  1. Szok D. Tajti J. Nyári A. Vécsei L. Therapeutic approaches for peripheral and central neuropathic pain. Behav. Neurol. 2019 2019 8685954 10.1155/2019/8685954
    [Google Scholar]
  2. Meacham K. Shepherd A. Mohapatra D.P. Haroutounian S. Neuropathic pain: Central vs. peripheral Mechanisms. Curr. Pain Headache Rep. 2017 21 6 28 10.1007/s11916‑017‑0629‑5 28432601
    [Google Scholar]
  3. Rosenberger D.C. Blechschmidt V. Timmerman H. Wolff A. Treede R.D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020 127 4 589 624 10.1007/s00702‑020‑02145‑7 32036431
    [Google Scholar]
  4. Burke D. Fullen B.M. Stokes D. Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta‐analysis. Eur. J. Pain 2017 21 1 29 44 10.1002/ejp.905 27341614
    [Google Scholar]
  5. Zhang R. Lao L. Ren K. Berman B.M. Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology 2014 120 2 482 503 10.1097/ALN.0000000000000101 24322588
    [Google Scholar]
  6. Ju Z.Y. Wang K. Cui H.S. Yao Y. Liu S.M. Zhou J. Chen T.Y. Xia J. Acupuncture for neuropathic pain in adults. Cochrane Libr. 2017 2019 7 CD012057 10.1002/14651858.CD012057.pub2 29197180
    [Google Scholar]
  7. Vyas S. Shukla A. Shivhare S.J. Bagal V.S. Upadhyay N. High performance conducting nanocomposites polyaniline (PANI)-CuO with enhanced antimicrobial activity for biomedical applications. ES Mater. Manuf 2021 15 46 52 10.30919/esmm5f468
    [Google Scholar]
  8. Gajbhiye S.S. Salve M.V. Gaikwad M.D. Rasage A.R. Khater M.S. Ghadage V.H. Chaure N.B. Influence of synthesis conditions on the physical characteristics and antibacterial activities of cerium oxide nanoparticles in biomedical applications. Engineered Science 2024 32 1254 10.30919/es1254
    [Google Scholar]
  9. Bahaar H. Kumar B.S. Reddy S.G. Guo Z. Pereira A. Liu T.X.J.E.S. From concept to creation: Micro/nanobot technology from fabrication to biomedical applications. Engineered Science 2024 32 1346 10.30919/es1346
    [Google Scholar]
  10. Wu X. Mo Q. He T. Zhi N. Huang Y. Yang S. Acupoint catgut embedding for the treatment of obesity in adults. Medicine 2019 98 8 e14610 10.1097/MD.0000000000014610 30813186
    [Google Scholar]
  11. Huang C.Z. Li Y.L. Lan X.L. He B. Yang J. Li J. Electroacupuncture combined with acupoint catgut embedding for postoperative pain after fistulotomy. Zhen Ci Yan Jiu 2021 46 5 421 425 10.13702/j.1000‑0607.200603 34085467
    [Google Scholar]
  12. Wang X. Huang Y. Li M. Lin H. Lin C. Yang W. Ye X. Acupoint catgut embedding for insomnia. Medicine 2020 99 9 e19333 10.1097/MD.0000000000019333 32118766
    [Google Scholar]
  13. Zhang Y. Zhang Y. Chen X. Xu K. Huang M. Tan S. Zhou Z. Acupoint catgut embedding for the treatment of sciatica. Medicine 2021 100 1 e23951 10.1097/MD.0000000000023951 33429754
    [Google Scholar]
  14. Wu X.Y. Chen G.Z. Li Y.T. Xu Y.X. The key issues and corresponding strategy of acupoint medicated catgut embedding therapy. Zhongguo Zhenjiu 2019 39 1 81 85 [The key issues and corresponding strategy of acupoint medicated catgut embedding therapy] 10.13703/j.0255‑2930.2019.01.019 30672262
    [Google Scholar]
  15. Yoon J.Y. Park Y.C. Kim S.J. Goo B. Nam S.S. Baek Y.H. Kim E.J. Nam D. Lee H.J. Kim J.S. Seo B.K. Thread-embedding acupuncture for lumbar herniated intervertebral disc. Medicine 2019 98 45 e17847 10.1097/MD.0000000000017847 31702642
    [Google Scholar]
  16. Jun P. Han C.H. Yang C.S. Kim M.J. Kim J.S. Lee C.I. Lee J.H. Park C.A. Lee Y.J. Lee H.J. Efficacy and safety of thread embedding acupuncture on knee osteoarthritis. Medicine 2020 99 36 e21957 10.1097/MD.0000000000021957 32899030
    [Google Scholar]
  17. Romero L. Merlos M. Vela J.M. Antinociception by sigma-1 receptor antagonists. Adv. Pharmacol. 2016 75 179 215 10.1016/bs.apha.2015.11.003 26920013
    [Google Scholar]
  18. Choi S.R. Roh D.H. Yoon S.Y. Choi H.S. Kang S.Y. Han H.J. Beitz A.J. Lee J.H. Spinal cytochrome P450c17 plays a key role in the development of neuropathic mechanical allodynia: Involvement of astrocyte sigma-1 receptors. Neuropharmacology 2019 149 169 180 10.1016/j.neuropharm.2019.02.013 30797030
    [Google Scholar]
  19. Choi S.R. Roh D.H. Yoon S.Y. Kwon S.G. Choi H.S. Han H.J. Beitz A.J. Lee J.H. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology 2016 111 34 46 10.1016/j.neuropharm.2016.08.027 27567941
    [Google Scholar]
  20. Ruiz-Cantero M.C. González-Cano R. Tejada M.Á. Santos-Caballero M. Perazzoli G. Nieto F.R. Cobos E.J. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol. Res. 2021 163 105339 10.1016/j.phrs.2020.105339 33276102
    [Google Scholar]
  21. Zhong J. Liu M. Chen S. Liu S. Li F. Li C. Study of the regulatory mechanism of miR-26a-5p in allergic asthma. Cells 2022 12 1 38 10.3390/cells12010038 36611831
    [Google Scholar]
  22. Bravo-Caparrós I. Ruiz-Cantero M.C. Perazzoli G. Cronin S.J.F. Vela J.M. Hamed M.F. Penninger J.M. Baeyens J.M. Cobos E.J. Nieto F.R. Sigma‐1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. FASEB J. 2020 34 4 5951 5966 10.1096/fj.201901921R 32157739
    [Google Scholar]
  23. Xu H.L. Xu S.Y. Mo K. [Transcription of protein arginine Nmethyltransferase genes in mouse dorsal root ganglia following peripheral nerve injury] Nan Fang Yi Ke Da Xue Xue Bao 2017 37 12 1620 1625 10.3969/j.issn.1673‑4254.2017.12.10 29292255
    [Google Scholar]
  24. Carroll P. Novel mechanisms in peripheral neuropathic pain. Swiss Arch. Neurol. Psychiatr. Psychother. 2019 10.4414/sanp.2019.03010
    [Google Scholar]
  25. Lewis R.A. Williams N.H. Sutton A.J. Burton K. Din N.U. Matar H.E. Hendry M. Phillips C.J. Nafees S. Fitzsimmons D. Rickard I. Wilkinson C. Comparative clinical effectiveness of management strategies for sciatica: Systematic review and network meta-analyses. Spine J. 2015 15 6 1461 1477 10.1016/j.spinee.2013.08.049 24412033
    [Google Scholar]
  26. Huang Z. Liu S. Zhou J. Yao Q. Liu Z. Efficacy and safety of acupuncture for chronic discogenic sciatica, a randomized controlled sham acupuncture trial. Pain Med. 2019 20 11 2303 2310 10.1093/pm/pnz167 31369674
    [Google Scholar]
  27. Kim K.W. Park K. Park H.J. Jahng G.H. Jo D.J. Cho J.H. Song E.M. Shin W.C. Yoon Y.J. Kim S.J. Eun S. Song M.Y. Effect and neurophysiological mechanism of acupuncture in patients with chronic sciatica: Protocol for a randomized, patient-assessor blind, sham-controlled clinical trial. Trials 2019 20 1 56 10.1186/s13063‑018‑3164‑8 30651139
    [Google Scholar]
  28. Ostelo R.W.J.G. Physiotherapy management of sciatica. J. Physiother. 2020 66 2 83 88 10.1016/j.jphys.2020.03.005 32291226
    [Google Scholar]
  29. Maslak J.P. Jenkins T.J. Weiner J.A. Kannan A.S. Patoli D.M. McCarthy M.H. Hsu W.K. Patel A.A. Burden of sciatica on US medicare recipients. J. Am. Acad. Orthop. Surg. 2020 28 10 e433 e439 10.5435/JAAOS‑D‑19‑00174 31517882
    [Google Scholar]
  30. Du K. Wang X. Chi L. Li W. Role of sigma-1 receptor/p38 MAPK inhibition in acupoint catgut embedding–mediated analgesic effects in complete freund’s adjuvant-induced inflammatory pain. Anesth. Analg. 2017 125 2 662 669 10.1213/ANE.0000000000001857 28682953
    [Google Scholar]
  31. Cendán C.M. Pujalte J.M. Portillo-Salido E. Montoliu L. Baeyens J.M. Formalin-induced pain is reduced in σ1 receptor knockout mice. Eur. J. Pharmacol. 2005 511 1 73 74 10.1016/j.ejphar.2005.01.036 15777781
    [Google Scholar]
  32. Kim H.W. Kwon Y.B. Roh D.H. Yoon S.Y. Han H.J. Kim K.W. Beitz A.J. Lee J.H. Intrathecal treatment with σ1 receptor antagonists reduces formalin‐induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. Br. J. Pharmacol. 2006 148 4 490 498 10.1038/sj.bjp.0706764 16682960
    [Google Scholar]
  33. Wiberg R. Novikova L.N. Kingham P.J. Evaluation of apoptotic pathways in dorsal root ganglion neurons following peripheral nerve injury. Neuroreport 2018 29 9 779 785 10.1097/WNR.0000000000001031 29659443
    [Google Scholar]
  34. Schaeffer V. Meyer L. Patte-mensah C. Eckert A. Mensah-nyagan A.G. Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 2010 58 2 169 180 10.1002/glia.20910 19565659
    [Google Scholar]
  35. Chen X.J. Wang L. Song X.Y. Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Biomed. Pharmacother. 2020 125 110003 10.1016/j.biopha.2020.110003 32187955
    [Google Scholar]
  36. Taylor R.C. Cullen S.P. Martin S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 2008 9 3 231 241 10.1038/nrm2312 18073771
    [Google Scholar]
  37. Di Cesare Mannelli L. Ghelardini C. Calvani M. Nicolai R. Mosconi L. Toscano A. Pacini A. Bartolini A. Neuroprotective effects of acetyl‐ L ‐carnitine on neuropathic pain and apoptosis: A role for the nicotinic receptor. J. Neurosci. Res. 2009 87 1 200 207 10.1002/jnr.21815 18709658
    [Google Scholar]
  38. Wang S.M. Goguadze N. Kimura Y. Yasui Y. Pan B. Wang T.Y. Nakamura Y. Lin Y.T. Hogan Q.H. Wilson K.L. Su T.P. Wu H. Genomic action of sigma-1 receptor chaperone relates to neuropathic pain. Mol. Neurobiol. 2021 58 6 2523 2541 10.1007/s12035‑020‑02276‑8 33459966
    [Google Scholar]
  39. Puente B. Nadal X. Portillo-Salido E. Sánchez-Arroyos R. Ovalle S. Palacios G. Muro A. Romero L. Entrena J.M. Baeyens J.M. López-García J.A. Maldonado R. Zamanillo D. Vela J.M. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 2009 145 3 294 303 10.1016/j.pain.2009.05.013 19505761
    [Google Scholar]
  40. Rakesh S. Assessment of secondary metabolites, in-vitro antioxidant and anti-inflammatory activity of root of Argemone mexicana L. ES Food. Agrofor 2024 15 1007 10.30919/esfaf1007
    [Google Scholar]
  41. Venkatachalam H. Jayashree B.S. Akhila H.S. Evaluation of anti-inflammatory potentials of novel flavonols and their metal complexes. Engineered Science 2022 18 217 223 10.30919/es8e676
    [Google Scholar]
  42. Grace P.M. Hutchinson M.R. Maier S.F. Watkins L.R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 2014 14 4 217 231 10.1038/nri3621 24577438
    [Google Scholar]
  43. Castany S. Gris G. Vela J.M. Verdú E. Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci. Rep. 2018 8 1 3873 10.1038/s41598‑018‑22217‑9 29497125
    [Google Scholar]
  44. Tsuda M. Microglia in the spinal cord and neuropathic pain. J. Diabetes Investig. 2016 7 1 17 26 10.1111/jdi.12379 26813032
    [Google Scholar]
  45. Jin S.X. Zhuang Z.Y. Woolf C.J. Ji R.R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 2003 23 10 4017 4022 10.1523/JNEUROSCI.23‑10‑04017.2003 12764087
    [Google Scholar]
  46. Tsuda M. Mizokoshi A. Shigemoto-Mogami Y. Koizumi S. Inoue K. Activation of p38 mitogen‐activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 2004 45 1 89 95 10.1002/glia.10308 14648549
    [Google Scholar]
  47. Yang B. Ma S. Zhang C. Sun J. Zhang D. Chang S. Lin Y. Zhao G. Higenamine attenuates neuropathic pain by inhibition of NOX2/ROS/TRP/P38 mitogen-activated protein kinase/NF-ĸB signaling pathway. Front. Pharmacol. 2021 12 716684 10.3389/fphar.2021.716684 34630095
    [Google Scholar]
  48. Di W. Shi X. Lv H. Liu J. Zhang H. Li Z. Fang Y. Activation of the nuclear factor E2-related factor 2/anitioxidant response element alleviates the nitroglycerin-induced hyperalgesia in rats. J. Headache Pain 2016 17 1 99 10.1186/s10194‑016‑0694‑x 27778243
    [Google Scholar]
  49. Davoli-Ferreira M. de Lima K.A. Fonseca M.M. Guimarães R.M. Gomes F.I. Cavallini M.C. Quadros A.U. Kusuda R. Cunha F.Q. Alves-Filho J.C. Cunha T.M. Regulatory T cells counteract neuropathic pain through inhibition of the Th1 response at the site of peripheral nerve injury. Pain 2020 161 8 1730 1743 10.1097/j.pain.0000000000001879 32701834
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073377826250728055125
Loading
/content/journals/cchts/10.2174/0113862073377826250728055125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test