Skip to content
2000
image of Shen-Ling-Bai-Zhu-San Mitigates Ulcerative Colitis by EnhancingIntestinal Barrier Integrity via the AhR-CYP1A1-NF-κB Signal Pathway

Abstract

Introduction

Ulcerative Colitis (UC) represents a persistent inflammatory disorder of the colon, typically characterized by abdominal discomfort, diarrhea, and blood stools. Shen-Ling-Bai-Zhu-San (SLBZS), a traditional Chinese herbal formula, has shown clinical efficacy in alleviating symptoms such as abdominal bloating, frequent loose stools, and diarrhea. Nonetheless, the precise molecular mechanisms underlying its therapeutic effects remain largely unclear.

Methods

UPLC-QE-MS combined with network pharmacology was employed to identify bioactive compounds and potential targets of SLBZS. A Dextran Sulfate Sodium (DSS)-induced colitis mouse model was used to evaluate its effects by monitoring changes in body weight, colon length, Disease Activity Index (DAI), inflammatory cytokines, oxidative stress markers, tight junction proteins, immunofluorescence, and histopathology. Molecular docking was used to predict the interaction of active compounds with UC-related targets, and Western blot analysis was performed to validate signaling pathways.

Results

SLBZS markedly improved DSS-induced colitis by restoring body weight, colon length, DAI, and histology. It suppressed pro-inflammatory cytokines and oxidative markers while enhancing antioxidant defenses. Expression of Occludin and Claudin-1 was recovered. UPLC-MS/MS identified 458 constituents, and network pharmacology revealed 98 potential targets enriched in NF-κB, TNF, and HIF-1 pathways. Validation experiments demonstrated the upregulation of AhR and CYP1A1 with concomitant downregulation of NLRP3 and IL-6. Molecular docking confirmed high-affinity interactions between key compounds and UC-related targets.

Discussion

These results indicate that SLBZS exerts its effects through anti-inflammatory and antioxidant mechanisms while strengthening the intestinal barrier, reflecting its multi-target therapeutic potential.

Conclusions

SLBZS alleviates UC by regulating the AhR-CYP1A1-NF-κB axis, suppressing inflammation, and maintaining mucosal barrier function.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073425771250828112001
2025-09-30
2025-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073425771250828112001/BMS-CCHTS-2025-390.html?itemId=/content/journals/cchts/10.2174/0113862073425771250828112001&mimeType=html&fmt=ahah

References

  1. Hirten R.P. Sands B.E. New therapeutics for ulcerative colitis. Annu. Rev. Med. 2021 72 1 199 213 10.1146/annurev‑med‑052919‑120048 33502898
    [Google Scholar]
  2. Le Berre C. Peyrin-Biroulet L. Sandborn W.J. Colombel J.F. Rubin D. Chowers Y. Reinisch W. Schreiber S. Allez M. D’Haens G. Ghosh S. Koutroubakis I.E. Gibson P. Halfvarson J. Hart A. Kaser A. Munkholm P. Kruis W. Vermeire S. Loftus E.V. Lukas M. Mantzaris G.J. O’Morain C. Panes J. Rogler G. Spinelli A. Sands B.E. Ananthakrishnan A.N. Ng S.C. Sachar D. Travis S. Steinwurz F. Turner D. Dulai P.S. Jairath V. Dotan I. Abreu M. Panaccione R. Danese S. Selecting end points for disease-modification trials in inflammatory bowel disease: The SPIRIT consensus from the IOIBD. Gastroenterology 2021 160 5 1452 1460.e21 10.1053/j.gastro.2020.10.065 33421515
    [Google Scholar]
  3. Mishra R.K. Selim A. Gowri V. Ahmad A. Nadeem A. Siddiqui N. Raza S.S. Jayamurugan G. Khan R. Thiol-functionalized cellulose-grafted copper oxide nanoparticles for the therapy of experimental colitis in Swiss albino mice. ACS Biomater. Sci. Eng. 2022 8 5 2088 2095 10.1021/acsbiomaterials.2c00124 35452219
    [Google Scholar]
  4. Wang X. Xie X. Li Y. Xie X. Huang S. Pan S. Zou Y. Pan Z. Wang Q. Chen J. Zhou L. Luo X. Quercetin ameliorates ulcerative colitis by activating aryl hydrocarbon receptor to improve intestinal barrier integrity. Phytother. Res. 2024 38 1 253 264 10.1002/ptr.8027 37873559
    [Google Scholar]
  5. Pan S.M. Wang C.L. Hu Z.F. Zhang M.L. Pan Z.F. Zhou R.Y. Wang X.J. Huang S.W. Li Y.Y. Wang Q. Luo X. Zhou L. Hou J.T. Chen B. Baitouweng decoction repairs the inBarrier testinal barrier in DSS-induced colitis mice via regulation of AMPK/mTOR-mediated autophagy. J. Ethnopharmacol., 2024 318 (PtA) 11688 10.1016/j.jep.2023.116888 37437793
    [Google Scholar]
  6. Huang S. Wang X. Xie X. Su Y. Pan Z. Li Y. Liang J. Zhang M. Pan S. Xu B. Li L. Chen J. Luo X. Zhou L. Dahuang Mudan decoction repairs intestinal barrier in chronic colitic mice by regulating the function of ILC3. J. Ethnopharmacol. 2022 299 115652 10.1016/j.jep.2022.115652 36038092
    [Google Scholar]
  7. Huang S. Fu Y. Xu B. Liu C. Wang Q. Luo S. Nong F. Wang X. Huang S. Chen J. Zhou L. Luo X. Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway. Phytomedicine 2020 68 153179 10.1016/j.phymed.2020.153179 32062328
    [Google Scholar]
  8. Vissers E. Wellens J. Sabino J. Ultra-processed foods as a possible culprit for the rising prevalence of inflammatory bowel diseases. Front. Med. 2022 9 1058373 10.3389/fmed.2022.1058373 36419796
    [Google Scholar]
  9. Delzenne N.M. Neyrinck A.M. Bäckhed F. Cani P.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 2011 7 11 639 646 10.1038/nrendo.2011.126 21826100
    [Google Scholar]
  10. Felix Duarte P.D.A. Lima Dos Santos F. Kulkamp Guerreiro I.C. Meneghello Fuentefria A. Vidor Contri R. Drug nanocrystals: A review of their application in the topical treatment of skin infections. Int. J. Nanodimens. 2025
    [Google Scholar]
  11. Sadjadi M.S. Sadeghi B. Zare K. Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X=F (1), X=Cl (2). J. Mol. Struct. THEOCHEM 2007 817 1-3 27 33 10.1016/j.theochem.2007.04.015
    [Google Scholar]
  12. Wang R. Liu Y. Jiang Y. Zhang Y. Zhang Y. Wang B. Lu H. Su H. Liao W. Liu L. Li F. Zhang W. Ma S. Shenling Baizhu San alleviates central fatigue through SIRT1-PGC-1α-Mediated mitochondrial biogenesis. J. Ethnopharmacol. 2025 339 119110 10.1016/j.jep.2024.119110 39571696
    [Google Scholar]
  13. Wang Y. Lin Z. Huang J. Chu M. Ding X. Li W. Mao Q. Zhang B. An integrated study of Shenling Baizhu San against hyperuricemia: Efficacy evaluation, core target identification and active component discovery. J. Ethnopharmacol. 2022 295 115450 10.1016/j.jep.2022.115450 35688256
    [Google Scholar]
  14. Chao L. Li Z. Zhou J. Chen W. Li Y. Lv W. Guo A. Qu Q. Guo S. Shen-Ling-Bai-Zhu-San improves dextran sodium sulfate-induced colitis by inhibiting caspase-1/caspase-11-mediated pyroptosis. Front. Pharmacol. 2020 11 814 10.3389/fphar.2020.00814 32547403
    [Google Scholar]
  15. Lv W. Liu C. Ye C. Sun J. Tan X. Zhang C. Qu Q. Shi D. Guo S. Structural modulation of gut microbiota during alleviation of antibiotic-associated diarrhea with herbal formula. Int. J. Biol. Macromol. 2017 105 Pt 3 1622 1629 10.1016/j.ijbiomac.2017.02.060 28219687
    [Google Scholar]
  16. Li X. Xu S. Zhang Y. Li K. Gao X.J. Guo M. Berberine depresses inflammation and adjusts smooth muscle to ameliorate ulcerative colitis of cats by regulating gut microbiota. Microbiol. Spectr. 2022 10 6 e03207 e03222 10.1128/spectrum.03207‑22 36287004
    [Google Scholar]
  17. Guo H. Xie W. Ji Z. Wang B. Ren W. Gao W. Yuan B. Oyster peptides ameliorate dextran sulfate sodium-induced ulcerative colitis via modulating the gut microbiota and inhibiting the TLR4/NF-κB pathway. Nutrients 2024 16 11 1591 10.3390/nu16111591 38892524
    [Google Scholar]
  18. Gao Q. Tian W. Yang H. Hu H. Zheng J. Yao X. Hu B. Liu H. Shen-Ling-Bai-Zhu-San alleviates the imbalance of intestinal homeostasis in dextran sodium sulfate-induced colitis mice by regulating gut microbiota and inhibiting the NLRP3 inflammasome activation. J. Ethnopharmacol. 2024 319 Pt 1 117136 10.1016/j.jep.2023.117136 37704122
    [Google Scholar]
  19. Lei W. Chen M. Huang Z. Chen X. Wang J. Zheng J. Zhu Y. Lan X. He Y. Salidroside protects pulmonary artery endothelial cells against hypoxia-induced apoptosis via the AhR/NF-κB and Nrf2/HO-1 pathways. Phytomedicine 2024 128 155376 10.1016/j.phymed.2024.155376 38503152
    [Google Scholar]
  20. Gu S. Xue Y. Liu X. Tang Y. Wang D. Wu D. Yao M. Xia Z. Yang S. Cai G. Xue S. Dou D. Clinical, pharmacology and in vivo studies of QingDai (indigo naturalis) promotes mucosal healing and symptom improvement in ulcerative colitis by regulating the AHR-Th17/Treg pathway. J. Inflamm. (Lond.) 2024 21 1 44 10.1186/s12950‑024‑00413‑x 39501249
    [Google Scholar]
  21. Sroczyńska K. Totoń-Żurańska J. Czepiel J. Zając-Grabiec A. Jurczyszyn A. Wołkow P. Librowski T. Gdula-Argasińska J. Therapeutic role of eicosapentaenoic and arachidonic acid in benzo(a) pyrene-induced toxicity in HUVEC endothelial cells. Life Sci. 2022 293 120345 10.1016/j.lfs.2022.120345 35065163
    [Google Scholar]
  22. Walsh-Wilcox M.T. Kaye J. Rubinstein E. Walker M.K. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces vascular dysfunction that is dependent on perivascular adipose and cytochrome P4501A1 expression. Cardiovasc. Toxicol. 2019 19 6 565 574 10.1007/s12012‑019‑09529‑6 31115867
    [Google Scholar]
  23. Attafi I.M. Bakheet S.A. Ahmad S.F. Belali O.M. Alanazi F.E. Aljarboa S.A. AL-Alallah, I.A.; Korashy, H.M. AL-Alallah, I.A.; Korashy, H.M. Lead nitrate induces inflammation and apoptosis in rat lungs through the activation of NF-κB and AhR signaling pathways. Environ. Sci. Pollut. Res. Int. 2022 29 43 64959 64970 10.1007/s11356‑022‑19980‑8 35482242
    [Google Scholar]
  24. Zhou Y. Cui C. Ma X. Luo W. Zheng S.G. Qiu W. Nuclear factor κB (NF-κB)–mediated inflammation in multiple sclerosis. Front. Immunol. 2020 11 391 10.3389/fimmu.2020.00391 32265906
    [Google Scholar]
  25. Tan X. Wen Y. Han Z. Su X. Peng J. Chen F. Wang Y. Wang T. Wang C. Ma K. Cinnamaldehyde ameliorates dextran sulfate sodium‐induced colitis in mice by modulating TLR4/NF‐κB signaling pathway and NLRP3 inflammasome activation. Chem. Biodivers. 2023 20 2 202200089 10.1002/cbdv.202200089 36653304
    [Google Scholar]
  26. Li C. Wang L. Zhao J. Wei Y. Zhai S. Tan M. Guan K. Huang Z. Chen C. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. Phytomedicine 2022 104 154284 10.1016/j.phymed.2022.154284 35777121
    [Google Scholar]
  27. Wang C. Yu H. Li Z. Wu J. Gao P. He S. Tang D. Wang Q. Liu H. Lv H. Liu J. Novel applications of Yinhua Miyanling tablets in ulcerative colitis treatment based on metabolomics and network pharmacology. Phytomedicine 2024 128 155366 10.1016/j.phymed.2024.155366 38537445
    [Google Scholar]
  28. Tran M.N. Kim S. Nguyen Q.H.N. Lee S. Molecular mechanisms underlying Qi-Invigorating effects in traditional medicine: Network pharmacology-based study on the unique functions of Qi-Invigorating herb group. Plants 2022 11 19 2470 10.3390/plants11192470 36235337
    [Google Scholar]
  29. Luo T. Lu Y. Yan S. Xiao X. Rong X. Guo J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med. 2020 26 1 72 80 10.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  30. Cheng Z. Zhou Y. Xiong X. Li L. Chen Z. Wu F. Dong R. Liu Q. Zhao Y. Jiang S. Yu Q. Chen G. Traditional herbal pair Portulacae Herba and Granati Pericarpium alleviates DSS-induced colitis in mice through IL-6/STAT3/SOCS3 pathway. Phytomedicine 2024 126 155283 10.1016/j.phymed.2023.155283 38422652
    [Google Scholar]
  31. Lin H. Wang C. Yu H. Liu Y. Tan L. He S. Li Z. Wang C. Wang F. Li P. Liu J. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology. Biomed. Pharmacother. 2022 149 112823 10.1016/j.biopha.2022.112823 35334426
    [Google Scholar]
  32. Honap S. Jairath V. Sands B.E. Dulai P.S. Danese S. Peyrin-Biroulet L. Acute severe ulcerative colitis trials: The past, the present and the future. Gut 2024 73 10 1763 1773 10.1136/gutjnl‑2024‑332489 38834296
    [Google Scholar]
  33. Li L. Wang L. Fan W. Jiang Y. Zhang C. Li J. Peng W. Wu C. The application of fermentation technology in traditional Chinese medicine: A review. Am. J. Chin. Med. 2020 48 4 899 921 10.1142/S0192415X20500433 32431179
    [Google Scholar]
  34. Dai W. Zhan X. Peng W. Liu X. Peng W. Mei Q. Hu X. Ficus pandurata hance inhibits ulcerative colitis and colitis‐associated secondary liver damage of mice by enhancing antioxidation activity. Oxid. Med. Cell. Longev. 2021 2021 1 2617881 10.1155/2021/2617881 34966476
    [Google Scholar]
  35. Wei Y. Jiang N. Liu T. Liu C. Xiao W. Liang L. Li T. Yu Y. The comparison of extraction methods of ganjiang decoction based on fingerprint, quantitative analysis and pharmacodynamics. Chin. Med. 2020 15 1 81 10.1186/s13020‑020‑00355‑5 32774446
    [Google Scholar]
  36. Li J. Li M. Ye K. Jiang Q. Wang M. Wen X. Yang J. Chemical profile of Xian-He-Cao-Chang-Yan formula and its effects on ulcerative colitis. J. Ethnopharmacol. 2021 267 113517 10.1016/j.jep.2020.113517 33164773
    [Google Scholar]
  37. Newman D.J. Modern Traditional Chinese Medicine: Identifying, Defining and Usage of TCM Components. Adv. Pharmacol. Elsevier 2020 87 113 158
    [Google Scholar]
  38. Jiang Y. David B. Tu P. Barbin Y. Recent analytical approaches in quality control of traditional Chinese medicines-A review. Anal. Chim. Acta 2010 657 1 9 18 10.1016/j.aca.2009.10.024 19951752
    [Google Scholar]
  39. Xu Z. Wang K. Hu H. Hu Y. Huang J. Luo Z. Sinensetin attenuates LPS-induced acute pulmonary inflammation in mice and RAW264.7 cells by modulating NF-κB p65-mediated immune resistance and STAT3-mediated tissue resilience. Int. Immunopharmacol. 2025 148 114101 10.1016/j.intimp.2025.114101 39827664
    [Google Scholar]
  40. Li X. Wang Q. Wang M. Liu Y. Chen L. Wang F. Chen H. Integrated metabolomics and network pharmacology revealed the key active ingredients for the treatment of ulcerative colitis in the Citrus reticulata ‘Dahongpao’ peel. J. Pharm. Biomed. Anal. 2024 239 115887 10.1016/j.jpba.2023.115887 38056284
    [Google Scholar]
  41. Bian Y. Dong Y. Sun J. Sun M. Hou Q. Lai Y. Zhang B. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. J. Agric. Food Chem. 2020 68 1 160 167 10.1021/acs.jafc.9b06294 31825618
    [Google Scholar]
  42. Qu Y. Li X. Xu F. Zhao S. Wu X. Wang Y. Xie J. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis. Front. Immunol. 2021 12 679897 10.3389/fimmu.2021.679897 34367139
    [Google Scholar]
  43. Tang X. Wang K. Liu Z. Luo X. Wu M. Ding H. Liu G. Du Q. Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis. Carbohydr. Polym. 2025 352 123206 10.1016/j.carbpol.2024.123206 39843107
    [Google Scholar]
  44. Xiao Q. Luo L. Zhu X. Yan Y. Li S. Chen L. Wang X. Zhang J. Liu D. Liu R. Zhong Y. Formononetin alleviates ulcerative colitis via reshaping the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner. Phytomedicine 2024 135 156153 10.1016/j.phymed.2024.156153 39423480
    [Google Scholar]
  45. Tang L. Liu Y. Tao H. Feng W. Ren C. Shu Y. Luo R. Wang X. Combination of Youhua Kuijie Prescription and sulfasalazine can alleviate experimental colitis via IL-6/JAK2/STAT3 pathway. Front. Pharmacol. 2024 15 1437503 10.3389/fphar.2024.1437503 39318778
    [Google Scholar]
  46. Mao J. Tan L. Tian C. Wang W. Zou Y. Zhu Z. Li Y. Systemic investigation of the mechanism underlying the therapeutic effect of Astragalus membranaceus in ulcerative colitis. Am. J. Med. Sci. 2025 369 2 238 251 10.1016/j.amjms.2024.07.019 39009282
    [Google Scholar]
  47. Yang S. Duan H. Yan Z. Xue C. Niu T. Cheng W. Zhang Y. Zhao X. Hu J. Zhang L. Luteolin alleviates ulcerative colitis in mice by modulating gut microbiota and plasma metabolism. Nutrients 2025 17 2 203 10.3390/nu17020203 39861331
    [Google Scholar]
  48. Xue L. Jin X. Ji T. Li R. Zhuge X. Xu F. Quan Z. Tong H. Yu W. Luteolin ameliorates DSS-induced colitis in mice via suppressing macrophage activation and chemotaxis. Int. Immunopharmacol. 2023 124 (PtB) 110996 10.1016/j.intimp.2023.110996 37776768
  49. Xie X. Li P. Zhao M. Xu B. Zhang G. Wang Q. Ni C. Luo X. Zhou L. Luteolin ameliorates ulcerative colitis in mice via reducing the depletion of NCR+ILC3 through Notch signaling pathway. Chin. J. Nat. Med. 2024 22 11 991 1002 10.1016/S1875‑5364(24)60568‑6 39510641
    [Google Scholar]
  50. Safe S. Jayaraman A. Chapkin R.S. Howard M. Mohankumar K. Shrestha R. Flavonoids: Structure–function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021 37 2 147 162 10.1007/s43188‑020‑00080‑z 33868973
    [Google Scholar]
  51. Yang T. Feng Y.L. Chen L. Vaziri N.D. Zhao Y.Y. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit. Rev. Toxicol. 2019 49 5 445 460 10.1080/10408444.2019.1635987 31433724
    [Google Scholar]
  52. Hitzman R. Malca-Garcia G.R. Howell C. Park H.Y. Friesen J.B. Dong H. Dunlap T. McAlpine J.B. Vollmer G. Bosland M.C. Nikolić D. Lankin D.C. Chen S.N. Bolton J.L. Pauli G.F. Dietz B.M. DESIGNER fraction concept unmasks minor bioactive constituents in red clover (Trifolium pratense L.). Phytochemistry 2023 214 113789 10.1016/j.phytochem.2023.113789 37482264
    [Google Scholar]
  53. Guillán-Fresco M. Franco-Trepat E. Alonso-Pérez A. Jorge-Mora A. López-López V. Pazos-Pérez A. Piñeiro-Ramil M. Gómez R. Formononetin, a beer polyphenol with catabolic effects on chondrocytes. Nutrients 2023 15 13 2959 10.3390/nu15132959 37447284
    [Google Scholar]
  54. Saito A.C. Higashi T. Fukazawa Y. Otani T. Tauchi M. Higashi A.Y. Furuse M. Chiba H. Occludin and tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function. Mol. Biol. Cell 2021 32 8 722 738 10.1091/mbc.E20‑07‑0464 33566640
    [Google Scholar]
  55. Lu Z. Xiong W. Xiao S. Lin Y. Yu K. Yue G. Liu Q. Li F. Liang J. Huanglian Jiedu Decoction ameliorates DSS-induced colitis in mice via the JAK2/STAT3 signalling pathway. Chin. Med. 2020 15 1 45 10.1186/s13020‑020‑00327‑9 32411291
    [Google Scholar]
  56. Li H. Fan C. Lu H. Feng C. He P. Yang X. Xiang C. Zuo J. Tang W. Protective role of berberine on ulcerative colitis through modulating enteric glial cells–intestinal epithelial cells–immune cells interactions. Acta Pharm. Sin. B 2020 10 3 447 461 10.1016/j.apsb.2019.08.006 32140391
    [Google Scholar]
  57. Lee S.H. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest. Res. 2015 13 1 11 18 10.5217/ir.2015.13.1.11 25691839
    [Google Scholar]
  58. Zheng C. Jin Y. Yang J. Lin L. Lin Y. The attenuation of Scutellariae radix extract on oxidative stress for colon injury in lipopolysaccharide-induced RAW264.7 cell and 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis rats. Pharmacogn. Mag. 2016 12 46 153 159 10.4103/0973‑1296.177913 27076753
    [Google Scholar]
  59. Yu Y. Zhu H. Shen M. Yu Q. Chen Y. Xie J. Sulfation modification enhances the intestinal regulation of Cyclocarya paliurus polysaccharides in cyclophosphamide-treated mice via restoring intestinal mucosal barrier function and modulating gut microbiota. Food Funct. 2021 12 24 12278 12290 10.1039/D1FO03042F 34821227
    [Google Scholar]
  60. Zhang G. Kodani S. Hammock B.D. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog. Lipid Res. 2014 53 108 123 10.1016/j.plipres.2013.11.003 24345640
    [Google Scholar]
  61. Luo A. Wu Z. Li S. McReynolds C.B. Wang D. Liu H. Huang C. He T. Zhang X. Wang Y. Liu C. Hammock B.D. Hashimoto K. Yang C. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J. Transl. Med. 2023 21 1 71 10.1186/s12967‑023‑03917‑x 36732752
    [Google Scholar]
  62. Duan X. Wu R. Li J. Li Z. Liu Y. Chen P. Wang B. Studies on the alleviating effect of Bifidobacterium lactis V9 on dextran sodium sulfate-induced colitis in mice. Front. Med. 2025 12 1496023 10.3389/fmed.2025.1496023 39926427
    [Google Scholar]
  63. Panda S.K. Peng V. Sudan R. Ulezko Antonova A. Di Luccia B. Ohara T.E. Fachi J.L. Grajales-Reyes G.E. Jaeger N. Trsan T. Gilfillan S. Cella M. Colonna M. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity 2023 56 4 797 812.e4 10.1016/j.immuni.2023.01.023 36801011
    [Google Scholar]
  64. Ghosh S. Moorthy B. Haribabu B. Jala V.R. Cytochrome P450 1A1 is essential for the microbial metabolite, Urolithin A-mediated protection against colitis. Front. Immunol. 2022 13 1004603 10.3389/fimmu.2022.1004603 36159798
    [Google Scholar]
  65. Riemschneider S. Hoffmann M. Slanina U. Weber K. Hauschildt S. Lehmann J. Indol-3-carbinol and quercetin ameliorate chronic DSS-induced colitis in C57BL/6 mice by AhR-mediated anti-inflammatory mechanisms. Int. J. Environ. Res. Public Health 2021 18 5 2262 10.3390/ijerph18052262 33668818
    [Google Scholar]
  66. Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: Impact on the aging process. Ageing Res. Rev. 2023 87 101928 10.1016/j.arr.2023.101928 37031728
    [Google Scholar]
  67. Wang J. Zhao Y. Zhang X. Tu W. Wan R. Shen Y. Zhang Y. Trivedi R. Gao P. Type I.I. Type II alveolar epithelial cell aryl hydrocarbon receptor protects against allergic airway inflammation through controlling cell autophagy. Front. Immunol. 2022 13 964575 10.3389/fimmu.2022.964575 35935956
    [Google Scholar]
  68. Kimura A. Naka T. Nohara K. Fujii-Kuriyama Y. Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl. Acad. Sci. USA 2008 105 28 9721 9726 10.1073/pnas.0804231105 18607004
    [Google Scholar]
  69. Dai Y. Lu Q. Li P. Zhu J. Jiang J. Zhao T. Hu Y. Ding K. Zhao M. Xianglian Pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway. J. Ethnopharmacol. 2023 300 115690 10.1016/j.jep.2022.115690 36075274
    [Google Scholar]
  70. Chen X. Liu G. Yuan Y. Wu G. Wang S. Yuan L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019 10 12 906 10.1038/s41419‑019‑2157‑1 31787755
    [Google Scholar]
  71. Cuesta C.M. Pascual M. Pérez-Moraga R. Rodríguez-Navarro I. García-García F. Ureña-Peralta J.R. Guerri C. TLR4 deficiency affects the microbiome and reduces intestinal dysfunctions and inflammation in chronic alcohol-fed mice. Int. J. Mol. Sci. 2021 22 23 12830 10.3390/ijms222312830 34884634
    [Google Scholar]
  72. Yuan S.N. Wang M. Han J.L. Feng C.Y. Wang M. Wang M. Sun J.Y. Li N. Simal-Gandara J. Liu C. Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice. Phytomedicine 2023 112 154702 10.1016/j.phymed.2023.154702 36764096
    [Google Scholar]
  73. Althagafy H.S. Ali F.E.M. Hassanein E.H.M. Mohammedsaleh Z.M. Kotb El-Sayed M.I. Atwa A.M. Sayed A.M. Soubh A.A. Canagliflozin ameliorates ulcerative colitis via regulation of TLR4/MAPK/NF-κB and Nrf2/PPAR-γ/SIRT1 signaling pathways. Eur. J. Pharmacol. 2023 960 176166 10.1016/j.ejphar.2023.176166 37898288
    [Google Scholar]
  74. Li J. Dan W. Zhang C. Liu N. Wang Y. Liu J. Zhang S. Exploration of berberine against ulcerative colitis via TLR4/NF-κB/HIF-1α pathway by bioinformatics and experimental validation. Drug Des. Devel. Ther. 2024 18 2847 2868 10.2147/DDDT.S436359 39006190
    [Google Scholar]
  75. Li C. Liu M. Deng L. Luo D. Ma R. Lu Q. Oxyberberine ameliorates TNBS-induced colitis in rats through suppressing inflammation and oxidative stress via Keap1/Nrf2/NF-κB signaling pathways. Phytomedicine 2023 116 154899 10.1016/j.phymed.2023.154899 37247589
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073425771250828112001
Loading
/content/journals/cchts/10.2174/0113862073425771250828112001
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: CYP1A1 ; intestinal barrier ; mechanism ; shen-ling-bai-zhu-san ; AhR ; ulcerative colitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test