Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

The current core theory of rhinitis and asthma is referred to as the antigen-antibody theory. However, the academic perspective is insufficient to explain the issues that arise in the epidemiology, pathophysiology, and clinical treatment of these diseases. So, the academic field of lipid metabolism disorders emerged. This perspective aims to explore two aspects: firstly, the overall approach and definition (starting with a new origin of the digestive tract rather than antigens from the respiratory tract; the non-digestion of various nutrients and the effects of probiotics result in a series of pathological and physiological changes in the body) and secondly, key aspects, such as . Dietary factors and lipid disorders that occur first, followed by airway hyperresponsiveness and asthma; . The prominent role of lipid droplet morphology in mast cells manifested as a bridge between lipid metabolites and lipid mediators released during allergies; and . Low-energy diet intervention with a significant effect on patients. This perspective offers valuable insights into new factors for the primary prevention of these diseases and exploring new avenues for the treatment of such diseases.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073377594250407083315
2025-04-10
2026-02-20
Loading full text...

Full text loading...

/deliver/fulltext/cchts/29/1/CCHTS-29-1-02.html?itemId=/content/journals/cchts/10.2174/0113862073377594250407083315&mimeType=html&fmt=ahah

References

  1. HuangK. YangT. XuJ. YangL. ZhaoJ. ZhangX. BaiC. KangJ. RanP. ShenH. WenF. ChenY. SunT. ShanG. LinY. XuG. WuS. WangC. WangR. ShiZ. XuY. YeX. SongY. WangQ. ZhouY. LiW. DingL. WanC. YaoW. GuoY. XiaoF. LuY. PengX. ZhangB. XiaoD. WangZ. ChenZ. BuX. ZhangH. ZhangX. AnL. ZhangS. ZhuJ. CaoZ. ZhanQ. YangY. LiangL. TongX. DaiH. CaoB. WuT. ChungK.F. HeJ. WangC. Prevalence, risk factors, and management of asthma in China: A national cross-sectional study.Lancet20193941019640741810.1016/S0140‑6736(19)31147‑X 31230828
    [Google Scholar]
  2. JingC. The role of dietary lipids and lipid metabolism disorders in the pathogenesis of atopic diseases.Guangdong Yaoxueyuan Xuebao19984596310.16809/j.cnki.1006‑8783.1998.04.021
    [Google Scholar]
  3. ForteG.C. da SilvaD.T.R. HennemannM.L. SarmentoR.A. AlmeidaJ.C. de Tarso Roth DalcinP. Diet effects in the asthma treatment: A systematic review.Crit. Rev. Food Sci. Nutr.201858111878188710.1080/10408398.2017.1289893 28362110
    [Google Scholar]
  4. YiallourosP.K. SavvaS.C. KolokotroniO. BehbodB. ZeniouM. EconomouM. ChadjigeorgiouC. KouridesY.A. TornaritisM.J. LamnisosD. MiddletonN. MiltonD.K. Low serum high-density lipoprotein cholesterol in childhood is associated with adolescent asthma.Clin. Exp. Allergy201242342343210.1111/j.1365‑2222.2011.03940.x 22356143
    [Google Scholar]
  5. AlsharairiN.A. The role of short-chain fatty acids in the interplay between a very low-calorie ketogenic diet and the infant gut microbiota and its therapeutic implications for reducing asthma.Int. J. Mol. Sci.20202124958010.3390/ijms21249580
    [Google Scholar]
  6. MetteS. The metabolomics of childhood atopic diseases: A comprehensive pathway-specific review.Metabolites2020101251110.3390/metabo10120511
    [Google Scholar]
  7. HugoF. Role of epoxyeicosatrienoic acids in the lung.Prostagland. Lipid Mediat.202014910645110.1016/j.prostaglandins.2020.106451
    [Google Scholar]
  8. PiteH. AguiarL. MorelloJ. MonteiroE. AlvesA.C. BourbonM. Morais-AlmeidaM. Current perspectives.J. Asthma Allergy20201323724710.2147/JAA.S208823 32801785
    [Google Scholar]
  9. LimJ.E. KimH.M. KimJ.H. BaekH.S. HanM.Y. Association between dyslipidemia and asthma in children: A systematic review and multicenter cohort study using a common data model.Clin. Exp. Pediatr.202366835736510.3345/cep.2023.00290 37321588
    [Google Scholar]
  10. EkströmS. SdonaE. KlevebroS. HallbergJ. GeorgelisA. KullI. MelénE. RisérusU. BergströmA. Dietary intake and plasma concentrations of PUFAs in childhood and adolescence in relation to asthma and lung function up to adulthood.Am. J. Clin. Nutr.2022115388689610.1093/ajcn/nqab427 34964829
    [Google Scholar]
  11. KyleJ.E. ClairG. BandyopadhyayG. MisraR.S. ZinkE.M. BloodsworthK.J. ShuklaA.K. DuY. LillisJ. MyersJ.R. AshtonJ. BushnellT. CochranM. DeutschG. BakerE.S. CarsonJ.P. MarianiT.J. XuY. WhitsettJ.A. PryhuberG. AnsongC. Cell type-resolved human lung lipidome reveals cellular cooperation in lung function.Sci. Rep.2018811345510.1038/s41598‑018‑31640‑x 30194354
    [Google Scholar]
  12. GaoS. High density lipoprotein inhibited group II innate lymphoid cells proliferation and function in allergic rhinitis.Allergy Asthma Clin. Immunol.20221814010.1186/s13223‑022‑00681‑3
    [Google Scholar]
  13. TangZ. Association between atopic dermatitis, asthma, and serum lipids: A UK biobank based observational study and mendelian randomization analysis.Front. Med.2022981009210.3389/fmed.2022.810092
    [Google Scholar]
  14. ZhangW. XuL. ZhuL. LiuY. YangS. ZhaoM. Lipid droplets, the central hub integrating cell metabolism and the immune system.Front. Physiol.20211274674910.3389/fphys.2021.746749 34925055
    [Google Scholar]
  15. BermúdezM.A. BalboaM.A. BalsindeJ. Lipid droplets, phospholipase A2, arachidonic acid, and atherosclerosis.Biomedicines2021912189110.3390/biomedicines9121891 34944707
    [Google Scholar]
  16. ChoK.A. Toll-like receptor 7 (TLR7) mediated transcriptomic changes on human mast cells.Ann. Dermatol.202133540240810.5021/ad.2021.33.5.402
    [Google Scholar]
  17. ZhengS. GuoY. WuZ. ChengJ. Theory of lipid metabolism disorders in rhinitis and asthma (lipid droplets).Cell Biochem. Biophys.202410.1007/s12013‑024‑01469‑5 39097558
    [Google Scholar]
  18. MuyunW. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis.Biochim. Biophys. Acta Mol. Cell Biol. Lipids202118662158853
    [Google Scholar]
  19. MuyunW. JieliC. The important role of dietary calories in asthma pathogenesis.Available from: http://clinicalcasereportsint.com
  20. ChengJ. Dietary probiotic for allergic rhinitis.Syst. Rev.201181115
    [Google Scholar]
  21. LisaG. Wood Diet, Obesity, and Asthma.Ann. Am. Thorac. Soc.201714Suppl. 5S332S33810.1513/AnnalsATS.201702‑124AW 29161081
    [Google Scholar]
  22. van BrakelL. MensinkR.P. WesselingG. PlatJ. Nutritional interventions to improve asthma-related outcomes through immunomodulation: A systematic review.Nutrients20201212383910.3390/nu12123839 33339167
    [Google Scholar]
  23. PetersU. Obesity and asthma. In: J. Allergy. Clin. Immunol.,2018141(4)1169117910.1016/j.jaci.2018.02.004
    [Google Scholar]
  24. Reyes-AngelJ. HanY.Y. LitonjuaA.A. CeledónJ.C. Diet and asthma: Is the sum more important than the parts?J. Allergy Clin. Immunol.2021148370670710.1016/j.jaci.2021.04.030 33965429
    [Google Scholar]
  25. NyenhuisS.M. DixonA.E. MaJ. Impact of lifestyle interventions targeting healthy diet, physical activity, and weight loss on asthma in adults: What is the evidence?J. Allergy Clin. Immunol. Pract.20186375176310.1016/j.jaip.2017.10.026 29221919
    [Google Scholar]
  26. HakalaK. Stenius-AarnialaB. Sovija¨rviA. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma.Chest200011851315132110.1378/chest.118.5.1315 11083680
    [Google Scholar]
  27. AlwarithJ. KahleovaH. CrosbyL. BrooksA. BrandonL. LevinS.M. BarnardN.D. The role of nutrition in asthma prevention and treatment.Nutr. Rev.2020781192893810.1093/nutrit/nuaa005 32167552
    [Google Scholar]
  28. HanY.Y. FornoE. ShivappaN. WirthM.D. HébertJ.R. CeledónJ.C. The dietary inflammatory index and current wheeze among children and adults in the United States.J. Allergy Clin. Immunol. Pract.201863834841.e210.1016/j.jaip.2017.12.029 29426751
    [Google Scholar]
  29. Han, Yueh-Ying Dietary patterns, asthma, and lung function in the hispanic community health study/study of latinos.Ann. Am. Thorac. Soc.202017329330110.1513/AnnalsATS.201908‑629OC
    [Google Scholar]
  30. RadzikowskaU. RinaldiA.O. Çelebi SözenerZ. KaraguzelD. WojcikM. CyprykK. AkdisM. AkdisC.A. SokolowskaM. The influence of dietary fatty acids on immune responses.Nutrients20191112299010.3390/nu11122990 31817726
    [Google Scholar]
  31. SonS.E. KohJ.M. ImD.S. Activation of free fatty acid receptor 4 (FFA4) ameliorates ovalbumin-induced allergic asthma by suppressing activation of dendritic and mast cells in mice.Int. J. Mol. Sci.2022239527010.3390/ijms23095270 35563671
    [Google Scholar]
  32. RenM. WangY. LinL. LiS. MaQ. α-Linolenic acid screened by molecular docking attenuates inflammation by regulating Th1/Th2 imbalance in ovalbumin-induced mice of allergic rhinitis.Molecules20222718589310.3390/molecules27185893 36144628
    [Google Scholar]
  33. RastogiS. MohantyS. SharmaS. TripathiP. Possible role of gut microbes and host’s immune response in gut–lung homeostasis.Front. Immunol.20221395433910.3389/fimmu.2022.954339 36275735
    [Google Scholar]
  34. BarochiaA.V. Serum apolipoprotein A-I and large high-density lipoprotein particles are positively correlated with FEV1 in atopic asthma.Am. J. Respir. Crit. Care Med.20151919990100010.1164/rccm.201411‑1990OC
    [Google Scholar]
  35. ScichiloneN. RizzoM. BenfanteA. CataniaR. GiglioR.V. NikolicD. MontaltoG. BelliaV. Serum low density lipoprotein subclasses in asthma.Respir. Med.2013107121866187210.1016/j.rmed.2013.09.001
    [Google Scholar]
  36. BrustadN. BønnelykkeK. ChawesB. Dietary prevention strategies for childhood asthma.Pediatr. Allergy Immunol.2023347e1398410.1111/pai.13984 37492917
    [Google Scholar]
  37. KimH.J. DinhD.T.T. YangJ. HerathK.H.I.N.M. SeoS.H. SonY.O. KangI. JeeY. High sucrose intake exacerbates airway inflammation through pathogenic Th2 and Th17 response in ovalbumin (OVA)-induced acute allergic asthma in C57BL/6 mice.J. Nutr. Biochem.202412410950410.1016/j.jnutbio.2023.109504 37944673
    [Google Scholar]
  38. EmraniA.S. SasanfarB. NafeiZ. BehniafardN. Salehi-AbargoueiA. Association between butter, margarine, and olive oil intake and asthma symptoms among school children: Result from a large-scale cross-sectional study.J. Immunol. Res.202320231710.1155/2023/2884630 37886368
    [Google Scholar]
  39. CalcoG.N. ProskocilB.J. JacobyD.B. FryerA.D. NieZ. Metformin prevents airway hyperreactivity in rats with dietary obesity.Am. J. Physiol. Lung Cell. Mol. Physiol.20213216L1105L111810.1152/ajplung.00202.2021 34668415
    [Google Scholar]
  40. PercopoC.M. McCulloughM. LimkarA.R. DrueyK.M. RosenbergH.F. Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice.PLoS One2021168e025599710.1371/journal.pone.0255997 34383839
    [Google Scholar]
  41. EslickS. JensenM.E. CollinsC.E. GibsonP.G. HiltonJ. WoodL.G. Characterising a weight loss intervention in obese asthmatic children.Nutrients202012250710.3390/nu12020507 32079331
    [Google Scholar]
  42. MusiolS. HarrisC.P. KarlinaR. GostnerJ.M. RathkolbB. SchnautzB. SchneiderE. MairL. VergaraE.E. FlexederC. KoletzkoS. BauerC.P. SchikowskiT. BerdelD. von BergA. HerberthG. RozmanJ. Hrabe de AngelisM. StandlM. Schmidt-WeberC.B. UssarS. AlessandriniF. Dietary digestible carbohydrates are associated with higher prevalence of asthma in humans and with aggravated lung allergic inflammation in mice.Allergy20237851218123310.1111/all.15589 36424672
    [Google Scholar]
  43. ChenX. YongS.B. YiiC.Y. FengB. HsiehK.S. LiQ. Intestinal microbiota and probiotic intervention in children with bronchial asthma.Heliyon20241015e3491610.1016/j.heliyon.2024.e34916 39144926
    [Google Scholar]
  44. KimY.C. SohnK.H. KangH.R. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: Potential therapeutic approaches.Korean J. Intern. Med.202439574675810.3904/kjim.2023.451 39252487
    [Google Scholar]
  45. KleniewskaP. PawliczakR. Can probiotics be used in the prevention and treatment of bronchial asthma?Pharmacol. Rep.202476474075310.1007/s43440‑024‑00618‑0 38951480
    [Google Scholar]
  46. AslamR. HerrlesL. AounR. PioskowikA. PietrzykA. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review.J. Allergy Clin. Immunol. Glob.20243310028910.1016/j.jacig.2024.100289 39105129
    [Google Scholar]
  47. BalanD. BaralT. ManuM.K. MohapatraA.K. MirajS.S. Efficacy of probiotics as adjuvant therapy in bronchial asthma: A systematic review and meta-analysis.Allergy Asthma Clin. Immunol.20242016010.1186/s13223‑024‑00922‑7 39563347
    [Google Scholar]
  48. KleniewskaP. PawliczakR. The link between dysbiosis, inflammation, oxidative stress, and asthma—the role of probiotics, prebiotics, and antioxidants.Nutrients20241711610.3390/nu17010016 39796449
    [Google Scholar]
  49. DeraN. Kosińska-KaczyńskaK. Żeber-LubeckaN. Brawura-Biskupski-SamahaR. MassalskaD. SzymusikI. DeraK. CiebieraM. Impact of early-life microbiota on immune system development and allergic disorders.Biomedicines202513112110.3390/biomedicines13010121 39857705
    [Google Scholar]
  50. SzajewskaH. An overview of early-life gut microbiota modulation strategies.Ann. Nutr. Metab.20251610.1159/000541492 39848238
    [Google Scholar]
  51. TafrishiR. AhanchianH. JafariS. PahlevanlooA. KianifarH. KianiM. MoazzenN. sadeghiT. SlyP.D. Development and clinical assessment of a novel probiotic candy in the prevention of respiratory infections in asthmatic children.World Allergy Organ. J.202518210102310.1016/j.waojou.2024.101023 39906528
    [Google Scholar]
  52. ZouW. MaD. SunF. ChenZ. ChenY. LiX. ChenM. LinM. ShiH. WuB. ChenL. LiangZ. LiuJ. Maternal OM-5 administration alleviates offspring allergic airway inflammation by downregulating IL-33/ILC2 axis.Pediatr. Allergy Immunol.2025362e7004410.1111/pai.70044 39927900
    [Google Scholar]
  53. ZhangH. FengY. YangH. LiY. MaZ. LiL. ChenL. ZhaoY. ShanL. XiaY. The interaction between genetic predicted gut microbiome abundance and particulate matter on the risk of incident asthma in adults.Ecotoxicol. Environ. Saf.202529111784810.1016/j.ecoenv.2025.117848 39919593
    [Google Scholar]
  54. WasuwanichP. BricknerL.B. RasnakeM.S. WitherellR.J. Poor outcome of rare lactobacillus bacteremia and endocarditis in a patient with frequent consumption of live culture yogurts.J. Community Hosp. Intern. Med. Perspect.20251519810210.55729/2000‑9666.1448 39867138
    [Google Scholar]
  55. JinY. LiuB. LiQ. MengX. TangX. JinY. YinY. PAC1 constrains type 2 inflammation through promotion of CGRP signaling in ILC2s.J. Clin. Invest.202413421e18010910.1172/JCI180109 39287985
    [Google Scholar]
  56. JuX. NagashimaA. Dvorkin-GhevaA. WattieJ. HowieK. WhetstoneC. RanjbarM. CusackR. DittaR. ParéG. SatiaI. O’ByrneP.M. GauvreauG.M. SehmiR. Neuromedin-U mediates rapid activation of airway group 2 innate lymphoid cells in mild asthma.Am. J. Respir. Crit. Care Med.2024210675576510.1164/rccm.202311‑2164OC 38598774
    [Google Scholar]
  57. DragunasG. KosterC.S. de Souza Xavier CostaN. MelgertB.N. MunhozC.D. GosensR. MauadT. Neuroplasticity and neuroimmune interactions in fatal asthma.Allergy202580246247310.1111/all.16373 39484998
    [Google Scholar]
  58. WangZ. ZhaoP. YanG. SunA. XuL. LiJ. ZhaiX. LiuX. MeiT. XuanY. NieY. Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells.Respir. Res.20252615010.1186/s12931‑025‑03125‑9 39930427
    [Google Scholar]
  59. HeC. WangQ. GaoJ. ChenH. TongP. Neuro-immune regulation in allergic diseases: Role of neuropeptides.Int. Immunopharmacol.202514511377110.1016/j.intimp.2024.113771 39667047
    [Google Scholar]
  60. CrossonT. BhatS. WangJ.C. SalaunC. FontaineE. RoversiK. HerzogH. RafeiM. BlunckR. TalbotS. Cytokines reprogram airway sensory neurons in asthma.Cell Rep.2024431211504510.1016/j.celrep.2024.115045 39661516
    [Google Scholar]
  61. ThakurA. MeiS. ZhangN. ZhangK. TaslakjianB. LianJ. WuS. ChenB. SolwayJ. ChenH.J. Pulmonary neuroendocrine cells: Crucial players in respiratory function and airway-nerve communication.Front. Neurosci.202418143818810.3389/fnins.2024.1438188 39176384
    [Google Scholar]
  62. Mann-NüttelR. MandalS. ArmbrusterM. PuttaguntaL. ForsytheP. Human pulmonary neuroendocrine cells respond to house dust mite extract with PAR-1 dependent release of CGRP. Allergy,2024all.16416.10.1111/all.16416 39601620
    [Google Scholar]
  63. SutradharS. AliH. Mast cell MrgprB2 in neuroimmune interaction in IgE-mediated airway inflammation and its modulation by β-arrestin2.Front. Immunol.202415147001610.3389/fimmu.2024.1470016 39483467
    [Google Scholar]
  64. Jing, Cheng Non allergic factors in diet and atopic diseases.J. Clin. Pulm. Med.20131114117
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073377594250407083315
Loading
/content/journals/cchts/10.2174/0113862073377594250407083315
Loading

Data & Media loading...


  • Article Type:
    Editorial
Keyword(s): antigen-antibody; asthma; diet; lipid; metabolism; perspective; primary prevention; Rhinitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test