Skip to content
2000
image of Mutation Mapping of PD-L1 Expression in Advanced Non-small Cell Lung Cancer: A Real-world Retrospective Cohort Study

Abstract

Introduction

The duration of response to immune checkpoint inhibitors (ICIs) varies because of tumor immune heterogeneity, and employing programmed death receptor ligand 1 (PD-L1) expression to evaluate the efficacy of anti-programmed cell death-1 (PD-1)/PD-L1 antibodies remains controversial.

Method

A total of 138 advanced non-small cell lung cancer (NSCLC) patients were subdivided into 2 groups - 52 patients with a PD-L1 Expression≥50% and 86 patients with a PD-L1 Expression <50% - based on next-generation sequencing (NGS) to analyze multiple-dimensional data types, including tumor mutation burden (TMB), gene alterations, gene enrichment analysis, therapy response, and immune-related adverse events (irAEs).

Results

High levels of PD-L1 expression were significantly associated with advanced age and TMB status. The PD-L1≥50% cohort presented mutations of KRAS, NOTCH1, and FAT, while the PD-L1<50% group exhibited mutations of EGFR, PTEN, or LATS1/2. Except for the ascertained DNA damage response regulation. Even though there was no significant difference between PD-L1≥50% and PD-L1<50% cohorts on therapy response, patients with a PD-L1 Expression≥50% elicited a high irAEs incidence rate and increased plasma interleukin 6 (IL-6) concentration.

Conclusion

This real-world retrospective study suggested that high expression of PD-L1 exhibited inappropriate activation of different pathways and collaborated with anti-cytokines and chemokines therapy may optimize clinical therapy efficacy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073368808250416035054
2025-04-25
2025-09-14
Loading full text...

Full text loading...

References

  1. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  2. Siegel R.L. Kratzer T.B. Giaquinto A.N. Sung H. Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025 75 1 10 45 Online ahead of print 10.3322/caac.21871 39817679
    [Google Scholar]
  3. Park S Hong TH Hwang S Heeke S Gay CM Kim J Jung HA Sun JM Ahn JS Ahn MJ Cho JH Choi YS Kim J Shim YM Kim HK Byers LA Heymach JV Choi YL Lee SH Park K Comprehensive analysis of transcription factor-based molecular subtypes and their correlation to clinical outcomes in small-cell lung cancer. EBioMedicine 2024 102 105062 2024
    [Google Scholar]
  4. Di Modugno F Di Carlo A Spada S Palermo B D'Ambrosio L D'Andrea D Morello G Tumoral and stromal hMENA isoforms impact tertiary lymphoid structure localization in lung cancer and predict immune checkpoint blockade response in patients with cancer. EBioMedicine 2024 101 105003
    [Google Scholar]
  5. Yang Z Zhou B Guo W Peng Y Tian H Xu J Wang S Chen X Hu B Liu C Wang Z Li C Gao S He J Genomic characteristics and immune landscape of super multiple primary lung cancer. EBioMedicine 2024 101 105019
    [Google Scholar]
  6. Hao F. Gu L. Zhong D. TP53 mutation mapping in advanced non-small cell lung cancer: A real-world retrospective cohort study. Curr. Oncol. 2022 29 10 7411 7419 10.3390/curroncol29100582 36290859
    [Google Scholar]
  7. Xu J Zhang Y Li M Shao Z Dong Y Li Q Bai H Duan J Zhong J Wan R Bai J Yi X Tang F Wang J Wang Z. A single-cell characterised signature integrating heterogeneity and microenvironment of lung adenocarcinoma for prognostic stratification. EBioMedicine 2024 102 105092
    [Google Scholar]
  8. Farris F. Elhagh A. Vigorito I. Alongi N. Pisati F. Giannattasio M. Casagrande F. Veghini L. Corbo V. Tripodo C. Di Napoli A. Matafora V. Bachi A. Unveiling the mechanistic link between extracellular amyloid fibrils, mechano-signaling and YAP activation in cancer. Cell Death Dis. 2024 15 1 28 10.1038/s41419‑024‑06424‑z 38199984
    [Google Scholar]
  9. Johnson R. Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 2014 13 1 63 79 10.1038/nrd4161 24336504
    [Google Scholar]
  10. Piccolo S. Cordenonsi M. Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin. Cancer Res. 2013 19 18 4925 4930 10.1158/1078‑0432.CCR‑12‑3172 23797907
    [Google Scholar]
  11. Lee B.S. Park D.I. Lee D.H. Lee J.E. Yeo M. Park Y.H. Lim D.S. Choi W. Lee D.H. Yoo G. Kim H. Kang D. Moon J.Y. Jung S.S. Kim J.O. Cho S.Y. Park H.S. Chung C. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem. Biophys. Res. Commun. 2017 491 2 493 499 10.1016/j.bbrc.2017.07.007 28684311
    [Google Scholar]
  12. Thompson E.D. Zahurak M. Murphy A. Cornish T. Cuka N. Abdelfatah E. Yang S. Duncan M. Ahuja N. Taube J.M. Anders R.A. Kelly R.J. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 2017 66 5 794 801 10.1136/gutjnl‑2015‑310839 26801886
    [Google Scholar]
  13. Antonia S.J. Villegas A. Daniel D. Vicente D. Murakami S. Hui R. Yokoi T. Chiappori A. Lee K.H. de Wit M. Cho B.C. Bourhaba M. Quantin X. Tokito T. Mekhail T. Planchard D. Kim Y.C. Karapetis C.S. Hiret S. Ostoros G. Kubota K. Gray J.E. Paz-Ares L. de Castro Carpeño J. Wadsworth C. Melillo G. Jiang H. Huang Y. Dennis P.A. Özgüroğlu M. Durvalumab after chemoradiotherapy in stage III non‐small‐cell lung cancer. N. Engl. J. Med. 2017 377 20 1919 1929 10.1056/NEJMoa1709937 28885881
    [Google Scholar]
  14. Huseni M.A. Wang L. Klementowicz J.E. Yuen K. Breart B. Orr C. Liu L. Li Y. Gupta V. Li C. Rishipathak D. Peng J. Şenbabaoǧlu Y. Modrusan Z. Keerthivasan S. Madireddi S. Chen Y.J. Fraser E.J. Leng N. Hamidi H. Koeppen H. Ziai J. Hashimoto K. Fassò M. Williams P. McDermott D.F. Rosenberg J.E. Powles T. Emens L.A. Hegde P.S. Mellman I. Turley S.J. Wilson M.S. Mariathasan S. Molinero L. Merchant M. West N.R. CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med. 2023 4 1 100878 10.1016/j.xcrm.2022.100878 36599350
    [Google Scholar]
  15. Yuen K.C. Liu L.F. Gupta V. Madireddi S. Keerthivasan S. Li C. Rishipathak D. Williams P. Kadel E.E. III Koeppen H. Chen Y.J. Modrusan Z. Grogan J.L. Banchereau R. Leng N. Thastrom A. Shen X. Hashimoto K. Tayama D. van der Heijden M.S. Rosenberg J.E. McDermott D.F. Powles T. Hegde P.S. Huseni M.A. Mariathasan S. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 2020 26 5 693 698 10.1038/s41591‑020‑0860‑1 32405063
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073368808250416035054
Loading
/content/journals/cchts/10.2174/0113862073368808250416035054
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test