Skip to content
2000
image of Integrating Animal Experiments, Bioinformatics and Molecular Dynamics Stimulations to Explore the Potential Mechanism of Songyang Duanwu Tea Improving Metabolic Syndrome

Abstract

Background

Metabolic syndrome (MetS) is a metabolic disorder characterized by the accumulation of various risk factors, including obesity, dyslipidemia, hypertension and so on. Songyang Duanwu Tea (SYT) has a high value in nutrition and health care, and it is widely used in traditional Chinese medicine for weight loss. Nevertheless, the mechanisms of SYT improving MetS remain to be elucidated. The objective of this study was to investigate the molecular targets and potential mechanisms by which SYT may improve MetS based on animal experiments and bioinformatics.

Methods

MetS model mice were established by a high-fat, high-sugar, high-salt diet (HFSSD). Obesity, dyslipidemia, hypertension, hyperuricemia and non-alcoholic fatty liver disease (NAFLD) of MetS model mice were evaluated to assess the effect of SYT on the treatment effects of MetS. The bioactive components in SYT were identified by bioinformatics and verified by HPLC-QTOF-MS. The possible molecular targets and mechanisms of action were predicted and verified using bioinformatics.

Results

SYT (1.2 g/kg) ameliorated obesity, dyslipidemia, hypertension, hyperuricemia and NAFLD in HFSSD-induced mice. Bioinformatics results suggested that the major bioactive components in SYT include the flavonoid components apigenin, kaempferol, luteolin and quercetin, and the polyphenolic component eugenol. HPLC-QTOF-MS further validated the presence of apigenin, kaempferol, luteolin and quercetin. These 4 bioactive components are involved in the regulation of SYT to improve MetS by regulating metabolism and attenuating inflammation, and the key targets include peroxisome proliferator-activated receptor gamma (PPARG), tumor necrosis factor alpha (TNFα), interleukin 1beta (IL1B) and interleukin 6 (IL6).

Discussion

SYT effectively improved the MetS model mice induced by HFSSD. The potential mechanism may regulate PPARG and attenuate inflammatory targets: TNFα, IL1B and IL6 through 4 flavonoid components: apigenin, kaempferol, luteolin and quercetin.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073367989250630102258
2025-07-18
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073367989250630102258/BMS-CCHTS-2024-705.html?itemId=/content/journals/cchts/10.2174/0113862073367989250630102258&mimeType=html&fmt=ahah

References

  1. Popiolek-Kalisz J. The relationship between dietary flavonols intake and metabolic syndrome in polish adults. Nutrients 2023 15 4 854 10.3390/nu15040854 36839212
    [Google Scholar]
  2. Wang L. Pan Y. Ye X. Zhu Y. Lian Y. Zhang H. Xu M. Liu M. Ruan X. Perirenal fat thickness and liver fat fraction are independent predictors of MetS in adults with overweight and obesity suspected with NAFLD: A retrospective study. Diabetol. Metab. Syndr. 2023 15 1 56 10.1186/s13098‑023‑01033‑w 36949492
    [Google Scholar]
  3. Catrysse L. van Loo G. Inflammation and the metabolic syndrome: The tissue-specific functions of NF-κB. Trends Cell Biol. 2017 27 6 417 429 10.1016/j.tcb.2017.01.006 28237661
    [Google Scholar]
  4. Battelli M.G. Bortolotti M. Polito L. Bolognesi A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase. Redox Biol. 2019 21 101070 10.1016/j.redox.2018.101070 30576922
    [Google Scholar]
  5. Xu H. Li X. Adams H. Kubena K. Guo S. Etiology of metabolic syndrome and dietary intervention. Int. J. Mol. Sci. 2018 20 1 128 10.3390/ijms20010128 30602666
    [Google Scholar]
  6. Srour B. Kordahi M.C. Bonazzi E. Deschasaux-Tanguy M. Touvier M. Chassaing B. Ultra-processed foods and human health: From epidemiological evidence to mechanistic insights. Lancet Gastroenterol. Hepatol. 2022 7 12 1128 1140 10.1016/S2468‑1253(22)00169‑8 35952706
    [Google Scholar]
  7. Power Guerra N. Müller L. Pilz K. Glatzel A. Jenderny D. Janowitz D. Vollmar B. Kuhla A. Dietary-induced low-grade inflammation in the liver. Biomedicines 2020 8 12 587 10.3390/biomedicines8120587 33317065
    [Google Scholar]
  8. Jais A. Paeger L. Sotelo-Hitschfeld T. Bremser S. Prinzensteiner M. Klemm P. Mykytiuk V. Widdershooven P.J.M. Vesting A.J. Grzelka K. Minère M. Cremer A.L. Xu J. Korotkova T. Lowell B.B. Zeilhofer H.U. Backes H. Fenselau H. Wunderlich F.T. Kloppenburg P. Brüning J.C. PNOCARC neurons promote hyperphagia and obesity upon high-fat-diet feeding. Neuron 2020 106 6 1009 1025.e10 10.1016/j.neuron.2020.03.022 32302532
    [Google Scholar]
  9. Lottenberg A.M. Afonso M.S. Lavrador M.S.F. Machado R.M. Nakandakare E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012 23 9 1027 1040 10.1016/j.jnutbio.2012.03.004 22749135
    [Google Scholar]
  10. Lubawy M. Formanowicz D. High-fructose diet–induced hyperuricemia accompanying metabolic syndrome–mechanisms and dietary therapy proposals. Int. J. Environ. Res. Public Health 2023 20 4 3596 10.3390/ijerph20043596 36834291
    [Google Scholar]
  11. Soleimani M. Barone S. Luo H. Zahedi K. Pathogenesis of hypertension in metabolic syndrome: The role of fructose and salt. Int. J. Mol. Sci. 2023 24 5 4294 10.3390/ijms24054294 36901725
    [Google Scholar]
  12. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018 20 2 12 10.1007/s11906‑018‑0812‑z 29480368
    [Google Scholar]
  13. Orsini F. D’Ambrosio F. Scardigno A. Ricciardi R. Calabrò G.E. Epidemiological impact of metabolic syndrome in overweight and obese european children and adolescents: A systematic literature review. Nutrients 2023 15 18 3895 10.3390/nu15183895 37764679
    [Google Scholar]
  14. Rask Larsen J. Dima L. Correll C.U. Manu P. The pharmacological management of metabolic syndrome. Expert Rev. Clin. Pharmacol. 2018 11 4 397 410 10.1080/17512433.2018.1429910 29345505
    [Google Scholar]
  15. Shah J.M. Lingiah V.A. Pyrsopoulos N.T. Galan M.A. 2411 acute liver injury in a patient treated with rosuvastatin: A rare adverse effect. Am. J. Gastroenterol. 2019 114 1 S1336 S1337 10.14309/01.ajg.0000599176.97591.67
    [Google Scholar]
  16. Li X. Wen Z. Si M. Jia Y. Liu H. Zheng Y. Ma D. Exploration of Hanshi Zufei prescription for treatment of COVID-19 based on network pharmacology. Chin. Herb. Med. 2022 14 2 294 302 10.1016/j.chmed.2021.06.006 35382000
    [Google Scholar]
  17. Wu P. Liang S. He Y. Lv R. Yang B. Wang M. Wang C. Li Y. Song X. Sun W. Network pharmacology analysis to explore mechanism of Three Flower Tea against nonalcoholic fatty liver disease with experimental support using high-fat diet-induced rats. Chin. Herb. Med. 2022 14 2 273 282 10.1016/j.chmed.2022.03.002 36117665
    [Google Scholar]
  18. Zhang Y. Awareness and ability of paradigm shift are needed for research on dominant diseases of TCM. Chin. Herb. Med. 2023 15 4 475 10.1016/j.chmed.2023.10.001 38094016
    [Google Scholar]
  19. Wu H. Tian J. Dai D. Liao J. Wang X. Wei X. Jin D. An X. Lian F. Tong X. Efficacy and safety assessment of traditional Chinese medicine for metabolic syndrome. BMJ Open Diabetes Res. Care 2020 8 1 001181 10.1136/bmjdrc‑2020‑001181 32220922
    [Google Scholar]
  20. Rao P.L. Shen Y.H. Song Y.J. Xu Y. Xu H.X. Prunella vulgaris L. attenuates gut dysbiosis and endotoxin leakage against alcoholic liver disease. J. Ethnopharmacol. 2024 319 Pt 2 117237 10.1016/j.jep.2023.117237 37769885
    [Google Scholar]
  21. Zhang Z. Zhou Y. Lin Y. Li Y. Xia B. Lin L. Liao D. GC–MS-based metabolomics research on the anti-hyperlipidaemic activity of Prunella vulgaris L. polysaccharides. Int. J. Biol. Macromol. 2020 159 461 473 10.1016/j.ijbiomac.2020.05.003 32387363
    [Google Scholar]
  22. Lee Y.S. Park E.J. Kim S.M. Kim J.Y. Lee H.J. Anti-sarcopenic obesity effects of Lonicera caerulea extract in high-fat diet-fed mice. Antioxidants 2021 10 10 1633 10.3390/antiox10101633 34679767
    [Google Scholar]
  23. Hu Y. Yin F. Liu Z. Xie H. Xu Y. Zhou D. Zhu B. Hu Y. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct. 2020 11 1 1037 1048 10.1039/C9FO01611B 31819934
    [Google Scholar]
  24. Wang Y.J. Su J. Yu J.J. Yan M.Q. Shi M.L. Huang Q.D. Li B. Wu W.Y. Xia R.S. Li S.F. Chen S.H. Lv G.Y. Buddleoside-rich Chrysanthemum indicum L. extract has a beneficial effect on metabolic hypertensive rats by inhibiting the enteric-origin LPS/TLR4 pathway. Front. Pharmacol. 2021 12 755140 10.3389/fphar.2021.755140 34690786
    [Google Scholar]
  25. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  26. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  27. Su J. Wang Y. Yan M. He Z. Zhou Y. Xu J. Li B. Xu W. Yu J. Chen S. Lv G. The beneficial effects of Polygonatum sibiricum Red. Superfine powder on metabolic hypertensive rats via gut-derived LPS/TLR4 pathway inhibition. Phytomedicine 2022 106 154404 10.1016/j.phymed.2022.154404 36075182
    [Google Scholar]
  28. Lei S.S. Li B. Chen Y.H. He X. Wang Y.Z. Yu H.H. Zhou F.C. Zheng X. Chen X. Zhang N.Y. Su J. Yan M.Q. Lv G.Y. Chen S.H. Dendrobii Officinalis, a traditional Chinese edible and officinal plant, accelerates liver recovery by regulating the gut-liver axis in NAFLD mice. J. Funct. Foods 2019 61 103458 10.1016/j.jff.2019.103458
    [Google Scholar]
  29. Liu Y. Li X. Chen C. Ding N. Zheng P. Chen X. Ma S. Yang M. TCMNPAS: A comprehensive analysis platform integrating network formulaology and network pharmacology for exploring traditional Chinese medicine. Chin. Med. 2024 19 1 50 10.1186/s13020‑024‑00924‑y 38519956
    [Google Scholar]
  30. Zhang C. Xiang H. Wang J. Shao G. Ding P. Gao Y. Xu H. Ji G. Wu T. Exploring the mechanism of Jianpi Huatan recipe in protecting hepatocellular carcinoma based on network pharmacology. J. Ethnopharmacol. 2023 317 116676 10.1016/j.jep.2023.116676 37279814
    [Google Scholar]
  31. Scardoni G. Petterlini M. Laudanna C. Analyzing biological network parameters with CentiScaPe. Bioinformatics 2009 25 21 2857 2859 10.1093/bioinformatics/btp517 19729372
    [Google Scholar]
  32. Wang Z. Sun H. Yao X. Li D. Xu L. Li Y. Tian S. Hou T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016 18 18 12964 12975 10.1039/C6CP01555G 27108770
    [Google Scholar]
  33. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  34. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  35. Jiang D. Zhao H. Du H. Deng Y. Wu Z. Wang J. Zeng Y. Zhang H. Wang X. Wu J. Hsieh C.Y. Hou T. How good are current docking programs at nucleic acid–ligand docking? A comprehensive evaluation. J. Chem. Theory Comput. 2023 19 16 5633 5647 10.1021/acs.jctc.3c00507 37480347
    [Google Scholar]
  36. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  37. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021 17 10 6281 6291 10.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  38. Raya-Cano E. Vaquero-Abellán M. Molina-Luque R. De Pedro-Jiménez D. Molina-Recio G. Romero-Saldaña M. Association between metabolic syndrome and uric acid: A systematic review and meta-analysis. Sci. Rep. 2022 12 1 18412 10.1038/s41598‑022‑22025‑2 36319728
    [Google Scholar]
  39. Fu C.E. Yong J.N. Ng C.H. Nah B. Chew N.W.S. Chin Y.H. Kong G. Tan D.J.H. Lim W.H. Lim L.K.E. Zeng R.W. Shabbir A. Tan E.X.X. Huang D.Q. Khoo C.M. Siddqui M.S. Chan M.Y.Y. Noureddin M. Mamas M.A. Muthiah M. The prognostic value of including non‐alcoholic fatty liver disease in the definition of metabolic syndrome. Aliment. Pharmacol. Ther. 2023 57 9 979 987 10.1111/apt.17397 36710531
    [Google Scholar]
  40. Alsukaibi A.K.D. Alenezi K.M. Haque A. Ahmad I. Saeed M. Verma M. Ansari I.A. Hsieh M.F. Chemical, biological and in silico assessment of date (P. dactylifera L.) fruits grown in Ha’il region. Front Chem. 2023 11 1138057 10.3389/fchem.2023.1138057 36936534
    [Google Scholar]
  41. Ahamad S. Hema K. Kumar V. Gupta D. The structural, functional, and dynamic effect of Tau tubulin kinase1 upon a mutation: A neuro‐degenerative hotspot. J. Cell. Biochem. 2021 122 11 1653 1664 10.1002/jcb.30112 34297427
    [Google Scholar]
  42. Ahamad S. Hema K. Gupta D. Identification of novel tau-tubulin kinase 2 inhibitors using computational approaches. ACS Omega 2023 8 14 13026 13037 10.1021/acsomega.3c00225 37065061
    [Google Scholar]
  43. Zheng Y. Ren X. Qi X. Song R. Zhao C. Ma J. Li X. Deng Q. He Y. Kong L. Qian L. Zhang F. Li M. Sun M. Liu W. Liu H. She G. Bao Yuan decoction alleviates fatigue by restraining inflammation and oxidative stress via the AMPK/CRY2/PER1 signaling pathway. J. Ethnopharmacol. 2024 328 118058 10.1016/j.jep.2024.118058 38513778
    [Google Scholar]
  44. Su Y. Tao L. Zhang X. Sheng X. Li Q. Fei W. Yin T. Kang A. Aa J. Wang G. Non-targeted characteristic filter analysis combined with in silico prediction strategies to identify the chemical components and in vivo metabolites of Dalitong Granules by UPLC-Q-TOF/MS/MS. J. Pharm. Biomed. Anal. 2023 222 115086 10.1016/j.jpba.2022.115086 36219926
    [Google Scholar]
  45. Liang Y. Xu M. Tang C. Fu K. Li X. Song Y. Zhang J. Wang Z. The study of chemical components in Qishiwei Zhenzhu pills and its anti-apoptotic mechanism in cerebral ischemic based on LC-MS and network pharmacology. J. Ethnopharmacol 2023 302(pt A) 115891 10.1016/j.jep.2022.115891 36368566
    [Google Scholar]
  46. Hu S. He C. Li Y. Yu Z. Chen Y. Wang Y. Ni D. Changes of fungal community and non-volatile metabolites during pile-fermentation of dark green tea. Food Res. Int. 2021 147 110472 10.1016/j.foodres.2021.110472 34399469
    [Google Scholar]
  47. Ju L. Zhang J. Wang F. Zhu D. Pei T. He Z. Han Z. Wang M. Ma Y. Xiao W. Chemical profiling of houttuynia cordata thunb. By UPLC-Q-TOF-MS and analysis of its antioxidant activity in C2C12 cells. J. Pharm. Biomed. Anal. 2021 204 114271 10.1016/j.jpba.2021.114271 34325249
    [Google Scholar]
  48. Chen P.Y. Yu J.W. Lu F.L. Lin M.C. Cheng H.F. Differentiating parts of Cinnamomum cassia using LC‐qTOF‐MS in conjunction with principal component analysis. Biomed. Chromatogr. 2016 30 9 1449 1457 10.1002/bmc.3703 26873449
    [Google Scholar]
  49. Tian D. Yang Y. Yu M. Han Z.Z. Wei M. Zhang H.W. Jia H.M. Zou Z.M. Tian D. Anti-inflammatory chemical constituents of Flos Chrysanthemi Indici determined by UPLC-MS/MS integrated with network pharmacology. Food Funct. 2020 11 7 6340 6351 10.1039/D0FO01000F 32608438
    [Google Scholar]
  50. Zhou C. Hu Y. Zhang Y. Wang C. Liao X. Cheng F. Jiang Y. Study on chemical characterization and sleep-improvement function of Prunella vulgaris L. based on the functional components. Food Res. Int. 2024 192 114737 10.1016/j.foodres.2024.114737 39147482
    [Google Scholar]
  51. Wei C. Rapid characterisation and identification of non-volatile components in patchouli based on UPLC-Q-TOF-MS combined with UNIFI and database. Zhongguo Zhongyao Zazhi 2023 48 14 3826 3838 10.19540/j.cnki.cjcmm.20230413.201 37475074
    [Google Scholar]
  52. Grahnemo L. Nethander M. Coward E. Gabrielsen M.E. Sree S. Billod J.M. Engstrand L. Abrahamsson S. Langhammer A. Hveem K. Ohlsson C. Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome: The HUNT study. Lancet Diabetes Endocrinol. 2022 10 7 481 483 10.1016/S2213‑8587(22)00113‑9 35662399
    [Google Scholar]
  53. Su Z. Li H. Ye Z. Zhu Y. Feng B. Tang L. Zheng G. Qidan Tiaozhi capsule attenuates metabolic syndrome via activating AMPK/PINK1-Parkin-mediated mitophagy. J. Ethnopharmacol. 2023 307 116091 10.1016/j.jep.2022.116091 36592823
    [Google Scholar]
  54. Zhang Y. Zhang L. Li Z. Liu X. He P. Gu Y. Liu L. Jin Y. Cheng S. Zhou F. Jia Y. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice. Phytomedicine 2024 132 155320 10.1016/j.phymed.2023.155320 38901285
    [Google Scholar]
  55. Watso J.C. Fancher I.S. Gomez D.H. Hutchison Z.J. Gutiérrez O.M. Robinson A.T. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes. Rev. 2023 24 8 13589 10.1111/obr.13589 37336641
    [Google Scholar]
  56. Xie F. Fu H. Hou J.F. Jiao K. Costigan M. Chen J. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats. PLoS One 2013 8 2 57427 10.1371/journal.pone.0057427 23451227
    [Google Scholar]
  57. Li Z. Ren Q. Zhou Z. Cai Z. Wang B. Han J. Zhang L. Discovery of the first-in-class dual PPARδ/γ partial agonist for the treatment of metabolic syndrome. Eur. J. Med. Chem. 2021 225 113807 10.1016/j.ejmech.2021.113807 34455359
    [Google Scholar]
  58. Ahmadian M. Suh J.M. Hah N. Liddle C. Atkins A.R. Downes M. Evans R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med. 2013 19 5 557 566 10.1038/nm.3159 23652116
    [Google Scholar]
  59. Cataldi S. Costa V. Ciccodicola A. Aprile M. PPARγ and diabetes: Beyond the genome and towards personalized medicine. Curr. Diab. Rep. 2021 21 6 18 10.1007/s11892‑021‑01385‑5 33866450
    [Google Scholar]
  60. Halabi C.M. Beyer A.M. de Lange W.J. Keen H.L. Baumbach G.L. Faraci F.M. Sigmund C.D. Interference with PPAR γ function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab. 2008 7 3 215 226 10.1016/j.cmet.2007.12.008 18316027
    [Google Scholar]
  61. Shi L. Li L.J. Sun X.Y. Chen Y.Y. Luo D. He L.P. Ji H.J. Gao W.P. Shen H.X. Er-Dong-Xiao-Ke decoction regulates lipid metabolism via PPARG-mediated UCP2/AMPK signaling to alleviate diabetic meibomian gland dysfunction. J. Ethnopharmacol. 2024 333 118484 10.1016/j.jep.2024.118484 38925318
    [Google Scholar]
  62. Perdicaro D.J. Rodriguez Lanzi C. Gambarte Tudela J. Miatello R.M. Oteiza P.I. Vazquez Prieto M.A. Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. J. Nutr. Biochem. 2020 79 108352 10.1016/j.jnutbio.2020.108352 32145471
    [Google Scholar]
  63. Li L. Pan G. Fan R. Li D. Guo L. Ma L. Liang H. Qiu J. Luteolin alleviates inflammation and autophagy of hippocampus induced by cerebral ischemia/reperfusion by activating PPAR gamma in rats. BMC Complement Med. Ther. 2022 22 1 176 10.1186/s12906‑022‑03652‑8 35778706
    [Google Scholar]
  64. Alam W. Rocca C. Khan H. Hussain Y. Aschner M. De Bartolo A. Amodio N. Angelone T. Cheang W.S. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction, Antioxidants. Basel MDPI AG 2021 1643 10.3390/antiox10101643
    [Google Scholar]
  65. Mogilenko D.A. Haas J.T. L’homme L. Fleury S. Quemener S. Levavasseur M. Becquart C. Wartelle J. Bogomolova A. Pineau L. Molendi-Coste O. Lancel S. Dehondt H. Gheeraert C. Melchior A. Dewas C. Nikitin A. Pic S. Rabhi N. Annicotte J.S. Oyadomari S. Velasco-Hernandez T. Cammenga J. Foretz M. Viollet B. Vukovic M. Villacreces A. Kranc K. Carmeliet P. Marot G. Boulter A. Tavernier S. Berod L. Longhi M.P. Paget C. Janssens S. Staumont-Sallé D. Aksoy E. Staels B. Dombrowicz D. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell 2019 177 5 1201 1216.e19 10.1016/j.cell.2019.03.018 31031005
    [Google Scholar]
  66. Canto-Osorio F. Denova-Gutierrez E. Sánchez-Romero L.M. Salmerón J. Barrientos-Gutierrez T. Dietary inflammatory index and metabolic syndrome in mexican adult population. Am. J. Clin. Nutr. 2020 112 2 373 380 10.1093/ajcn/nqaa135 32511694
    [Google Scholar]
  67. Barati E. Ghazizadeh H. Sadabadi F. Kazemi E. Ferns G.A. Avan A. Ghayour-Mobarhan M. Association of the il6 gene polymorphism with component features of metabolic syndrome in obese subjects. Biochem. Genet. 2019 57 5 695 708 10.1007/s10528‑019‑09913‑5 30989422
    [Google Scholar]
  68. Tylutka A. Morawin B. Walas Ł. Michałek M. Gwara A. Zembron-Lacny A. Assessment of metabolic syndrome predictors in relation to inflammation and visceral fat tissue in older adults. Sci. Rep. 2023 13 1 89 10.1038/s41598‑022‑27269‑6 36596839
    [Google Scholar]
  69. Rakotoarivelo V. Lacraz G. Mayhue M. Brown C. Rottembourg D. Fradette J. Ilangumaran S. Menendez A. Langlois M.F. Ramanathan S. Inflammatory cytokine profiles in visceral and subcutaneous adipose tissues of obese patients undergoing bariatric surgery reveal lack of correlation with obesity or diabetes. EBioMedicine 2018 30 237 247 10.1016/j.ebiom.2018.03.004 29548899
    [Google Scholar]
  70. Chen T.H. Kung W.S. Sun H.Y. Huang J.J. Lu J.Y. Luo K.H. Chuang H.Y. The relationship between metabolic syndrome and plasma metals modified by egfr and tnf-α gene polymorphisms. Toxics 2021 9 9 225 10.3390/toxics9090225 34564376
    [Google Scholar]
  71. Shabbir M.A. Mehak F. Khan Z.M. Ahmad W. Khan M.R. Zia S. Rahaman A. Aadil R.M. Interplay between ceramides and phytonutrients: New insights in metabolic syndrome. Trends Food Sci. Technol. 2021 111 483 494 10.1016/j.tifs.2021.03.010
    [Google Scholar]
  72. Han M.S. White A. Perry R.J. Camporez J.P. Hidalgo J. Shulman G.I. Davis R.J. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. USA 2020 117 6 2751 2760 10.1073/pnas.1920004117 31980524
    [Google Scholar]
  73. Ghosh S. Ashcraft K. An IL-6 link between obesity and cancer. Front. Biosci. 2013 E5 2 461 478 10.2741/E628 23277002
    [Google Scholar]
  74. Mancuso P. Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front. Endocrinol. 2019 10 137 10.3389/fendo.2019.00137
    [Google Scholar]
  75. Iqbal F. Baker W.S. Khan M.I. Thukuntla S. McKinney K.H. Abate N. Tuvdendorj D. Current and future therapies for addressing the effects of inflammation on HDL cholesterol metabolism. Br. J. Pharmacol. 2017 174 22 3986 4006 10.1111/bph.13743 28326542
    [Google Scholar]
  76. Guzik T.J. Nosalski R. Maffia P. Drummond G.R. Immune and inflammatory mechanisms in hypertension. Nat. Rev. Cardiol. 2024 21 6 396 416 10.1038/s41569‑023‑00964‑1 38172242
    [Google Scholar]
  77. Zhu Y. Wan N. Shan X. Deng G. Xu Q. Ye H. Sun Y. Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice. Acta Pharm. Sin. B 2021 11 5 1200 1212 10.1016/j.apsb.2020.12.008 34094828
    [Google Scholar]
  78. Geng Q. Xu J. Cao X. Wang Z. Jiao Y. Diao W. Wang X. Wang Z. Zhang M. Zhao L. Yang L. Deng T. Fan B. Xu Y. Jia L. Xiao C. PPARG-mediated autophagy activation alleviates inflammation in rheumatoid arthritis. J. Autoimmun. 2024 146 103214 10.1016/j.jaut.2024.103214 38648706
    [Google Scholar]
  79. Katkar G.D. Sayed I.M. Anandachar M.S. Castillo V. Vidales E. Toobian D. Usmani F. Sawires J.R. Leriche G. Yang J. Sandborn W.J. Das S. Sahoo D. Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun. Biol. 2022 5 1 231 10.1038/s42003‑022‑03168‑4 35288651
    [Google Scholar]
  80. Chiang S.C.C. Owsley E. Panchal N. Chaturvedi V. Terrell C.E. Jordan M.B. Mehta P.A. Davies S.M. Akeno N. Booth C. Marsh R.A. Quercetin ameliorates XIAP deficiency–associated hyperinflammation. Blood 2022 140 7 706 715 10.1182/blood.2021014335 35687753
    [Google Scholar]
  81. Gendrisch F. Esser P.R. Schempp C.M. Wölfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021 47 2 170 180 10.1002/biof.1699 33368702
    [Google Scholar]
  82. Yue S. Xue N. Li H. Huang B. Chen Z. Wang X. Hepatoprotective effect of apigenin against liver injury via the non-canonical NF-κB pathway in vivo and in vitro. Inflammation 2020 43 5 1634 1648 10.1007/s10753‑020‑01238‑5 32458347
    [Google Scholar]
  83. Lee C. Yoon S. Moon J.O. Kaempferol suppresses carbon tetrachloride-induced liver damage in rats via the MAPKs/NF-κB and AMPK/Nrf2 signaling pathways. Int. J. Mol. Sci. 2023 24 8 6900 10.3390/ijms24086900 37108064
    [Google Scholar]
  84. Cao P. Wang Y. Zhang C. Sullivan M.A. Chen W. Jing X. Yu H. Li F. Wang Q. Zhou Z. Wang Q. Tian W. Qiu Z. Luo L. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J. Nutr. Biochem. 2023 120 109414 10.1016/j.jnutbio.2023.109414 37423322
    [Google Scholar]
  85. Adachi S. Oyama M. Kondo S. Yagasaki K. Comparative effects of quercetin, luteolin, apigenin and their related polyphenols on uric acid production in cultured hepatocytes and suppression of purine bodies‐induced hyperuricemia by rutin in mice. Cytotechnology 2021 73 3 343 351 10.1007/s10616‑021‑00452‑9 34149170
    [Google Scholar]
  86. Chang C. Tzeng T.F. Liou S.S. Chang Y.S. Liu I.M. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Med. 2011 77 17 1876 1882 10.1055/s‑0031‑1279992 21728151
    [Google Scholar]
  87. Li H. Yuan W. Tian Y. Tian F. Wang Y. Sun X. Gong Y. Eugenol alleviated nonalcoholic fatty liver disease in rat via a gut-brain-liver axis involving glucagon-like Peptide-1. Arch. Biochem. Biophys. 2022 725 109269 10.1016/j.abb.2022.109269 35508252
    [Google Scholar]
  88. Cechinel-Zanchett C.C. da Silva R.C.M.V.A.F. Tenfen A. Siebert D.A. Micke G. Vitali L. Cechinel-Filho V. Faloni de Andrade S. de Souza P. Bauhinia forficata link, a Brazilian medicinal plant traditionally used to treat cardiovascular disorders, exerts endothelium-dependent and independent vasorelaxation in thoracic aorta of normotensive and hypertensive rats. J. Ethnopharmacol. 2019 243 112118 10.1016/j.jep.2019.112118 31351191
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073367989250630102258
Loading
/content/journals/cchts/10.2174/0113862073367989250630102258
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test