Skip to content
2000
image of Advancements in Precision Oncology: Harnessing High-Throughput Screening and Computational Strategies for Targeted Cancer Therapies

Abstract

Recent breakthroughs in precision medicine have significantly transformed the landscape of cancer treatment, propelling the development of individualized therapies characterized by enhanced therapeutic efficacy and reduced toxicity. This review examines the integration of high-throughput screening techniques with advanced computational methodologies, including artificial intelligence (AI) and machine learning, to expedite drug discovery and optimize treatment protocols in oncology. We explore the efficacy of targeted therapeutics, CAR T-cell therapies, and immune checkpoint inhibitors, alongside the role of combination therapies and biomarker identification in refining patient-specific treatment strategies. By aggregating scientific data from key databases, we evaluate the impact of modeling on drug efficacy predictions, cost reduction, and time efficiency in the development process. This review highlights the collaborative potential of computational and synthetic approaches in redefining oncological pharmacotherapy and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073397811250716154921
2025-07-31
2025-10-30
Loading full text...

Full text loading...

References

  1. Wilkinson L. Gathani T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022 95 1130 20211033 10.1259/bjr.20211033 34905391
    [Google Scholar]
  2. Chattopadhyay S. Hazra R. Mallick A. Gayen S. Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2024 1879 4 189110 10.1016/j.bbcan.2024.189110
    [Google Scholar]
  3. Klein A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021 18 7 493 502 10.1038/s41575‑021‑00457‑x 34002083
    [Google Scholar]
  4. Elemento O. Leslie C. Lundin J. Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nat. Rev. Cancer 2021 21 12 747 752 10.1038/s41568‑021‑00399‑1 34535775
    [Google Scholar]
  5. Shams M. Abdallah S. Alsadoun L. Hamid Y.H. Gasim R. Hassan A. Oncological horizons: The synergy of medical and surgical innovations in cancer treatment. Cureus 2023 15 11 49249 10.7759/cureus.49249 38143618
    [Google Scholar]
  6. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 175 10.1038/s41392‑024‑01856‑7
    [Google Scholar]
  7. Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res. 2021 165 105463 10.1016/j.phrs.2021.105463 33513356
    [Google Scholar]
  8. Silvestre A.L.P. Oshiro-Júnior J.A. Garcia C. Turco B.O. da Silva Leite J.M. de Lima Damasceno B.P.G. Soares J.C.M. Chorilli M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem. 2021 28 2 401 418 10.2174/1875533XMTAzfNzkzy 31965938
    [Google Scholar]
  9. Alvarez Secord A. O’Malley D.M. Sood A.K. Westin S.N. Liu J.F. Rationale for combination PARP inhibitor and antiangiogenic treatment in advanced epithelial ovarian cancer: A review. Gynecol. Oncol. 2021 162 2 482 495 10.1016/j.ygyno.2021.05.018 34090705
    [Google Scholar]
  10. Wei Y. He L. Liu T. Guo T. Xie C. Jia J. Lin Y. Liu J. Fan J. Efficacy and safety of PARP inhibitors combined with antiangiogenic agents in the maintenance treatment of ovarian cancer: A systematic review and meta-analysis with trial sequential analysis of randomized controlled trials. Front. Pharmacol. 2024 15 1372077 10.3389/fphar.2024.1372077 38584601
    [Google Scholar]
  11. Wan A. Zhang G. Ma D. Zhang Y. Qi X. An overview of the research progress of BRCA gene mutations in breast cancer. Biochim. Biophys. Acta Rev. Cancer 2023 1878 4 188907 10.1016/j.bbcan.2023.188907 37172654
    [Google Scholar]
  12. Borghaei H. Smith M.R. Campbell K.S. Immunotherapy of cancer. Eur. J. Pharmacol. 2009 625 1-3 41 54 10.1016/j.ejphar.2009.09.067 19837059
    [Google Scholar]
  13. Jain P. Darji P. Thakur B.S. Jain A. Jain P.K. Khare B. Immunostimulants: Concepts, types and functions. Asian J. Dent. Health. Sci. 2022 2 4 26 34 10.22270/ajdhs.v2i4.22
    [Google Scholar]
  14. Guallar-Garrido S. Julián E. Bacillus calmette-guérin (BCG) therapy for bladder cancer: An update. ImmunoTargets Ther. 2020 9 1 11 10.2147/ITT.S202006 32104666
    [Google Scholar]
  15. Sanlorenzo M. Vujic I. Carnevale-Schianca F. Quaglino P. Gammaitoni L. Fierro M.T. Aglietta M. Sangiolo D. Role of interferon in melanoma: Old hopes and new perspectives. Expert Opin. Biol. Ther. 2017 17 4 475 483 10.1080/14712598.2017.1289169 28274138
    [Google Scholar]
  16. Said S.S. Ibrahim W.N. Cancer resistance to immunotherapy: Comprehensive insights with future perspectives. Pharmaceutics 2023 15 4 1143 10.3390/pharmaceutics15041143 37111629
    [Google Scholar]
  17. Ravi P. Babu S. Emerging immune checkpoint inhibitors for the treatment of oropharyngeal squamous cell carcinoma. Oral Oncol. Rep. 2024 12 100650 10.1016/j.oor.2024.100650
    [Google Scholar]
  18. Chen Y. Guo D. Zhu C. Ren S. Sun C. Wang Y. Wang J. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front. Immunol. 2023 14 1323797 10.3389/fimmu.2023.1323797 38193090
    [Google Scholar]
  19. Zhang T. Yu-Jing L. Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front. Immunol. 2023 14 1029438 10.3389/fimmu.2023.1029438 36969168
    [Google Scholar]
  20. Hiam-Galvez K.J. Allen B.M. Spitzer M.H. Systemic immunity in cancer. Nat. Rev. Cancer 2021 21 6 345 359 10.1038/s41568‑021‑00347‑z 33837297
    [Google Scholar]
  21. Gong Y. Klein Wolterink R.G.J. Wang J. Bos G.M.J. Germeraad W.T.V. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 2021 14 1 73 10.1186/s13045‑021‑01083‑5 33933160
    [Google Scholar]
  22. Neelapu S.S. Dickinson M. Munoz J. Ulrickson M.L. Thieblemont C. Oluwole O.O. Herrera A.F. Ujjani C.S. Lin Y. Riedell P.A. Kekre N. de Vos S. Lui C. Milletti F. Dong J. Xu H. Chavez J.C. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: The phase 2 ZUMA-12 trial. Nat. Med. 2022 28 4 735 742 10.1038/s41591‑022‑01731‑4 35314842
    [Google Scholar]
  23. Tagliamonte M. Petrizzo A. Tornesello M.L. Buonaguro F.M. Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum. Vaccin. Immunother. 2014 10 11 3332 3346 10.4161/21645515.2014.973317 25483639
    [Google Scholar]
  24. Zafar A. Khan M.J. Abu J. Naeem A. Revolutionizing cancer care strategies: Immunotherapy, gene therapy, and molecular targeted therapy. Mol. Biol. Rep. 2024 51 1 219 10.1007/s11033‑023‑09096‑8 38281269
    [Google Scholar]
  25. Meeusen E. Lim E. Mathivanan S. Secreted tumor antigens–immune biomarkers for diagnosis and therapy. Proteomics 2017 17 23-24 1600442 10.1002/pmic.201600442 28714192
    [Google Scholar]
  26. Li W.H. Li Y.M. Chemical strategies to boost cancer vaccines. Chem. Rev. 2020 120 20 11420 11478 10.1021/acs.chemrev.9b00833 32914967
    [Google Scholar]
  27. Yang Y. Li H. Fotopoulou C. Cunnea P. Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front. Immunol. 2022 13 1049340 10.3389/fimmu.2022.1049340 36479129
    [Google Scholar]
  28. Chen M.Y. Zhang F. Goedegebuure S.P. Gillanders W.E. Dendritic cell subsets and implications for cancer immunotherapy. Front. Immunol. 2024 15 1393451 10.3389/fimmu.2024.1393451 38903502
    [Google Scholar]
  29. Isazadeh A. Hajazimian S. Garshasbi H. Shadman B. Baghbanzadeh A. Chavoshi R. Taefehshokr S. Farhoudi Sefidan Jadid M. Hajiasgharzadeh K. Baradaran B. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: Focus on myeloma. J. Cell. Physiol. 2021 236 2 791 805 10.1002/jcp.29905 32592235
    [Google Scholar]
  30. Köhler G. Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975 256 5517 495 497 10.1038/256495a0 1172191
    [Google Scholar]
  31. Mantovani A. Allavena P. Marchesi F. Garlanda C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022 21 799 820 10.1038/s41573‑022‑00520‑5
    [Google Scholar]
  32. Davidkova Y. Jagurinoski M. Guenova M. Mechanisms of resistance of antibody-drug conjugates—Obstacles to overcome. Resistance in Hematologic Malignancies and Cancer. United States Academic Press 2025 257 273 10.1016/B978‑0‑443‑21790‑6.00006‑7
    [Google Scholar]
  33. Behl A. Wani Z.A. Das N.N. Parmar V.S. Len C. Malhotra S. Chhillar A.K. Monoclonal antibodies in breast cancer: A critical appraisal. Crit. Rev. Oncol. Hematol. 2023 183 103915 10.1016/j.critrevonc.2023.103915 36702424
    [Google Scholar]
  34. Si Y. Melkonian A.L. Curry K.C. Xu Y. Tidwell M. Liu M. Zaky A.F. Liu X.M. Monoclonal antibody-based cancer therapies. Chin. J. Chem. Eng. 2021 30 301 307 10.1016/j.cjche.2020.11.009
    [Google Scholar]
  35. Marciscano A.E. Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Seminars in immunology. Amsterdam, Netherlands Elsevier 2021 101481 10.1016/j.smim.2021.101481
    [Google Scholar]
  36. Tai Y. Chen M. Wang F. Fan Y. Zhang J. Cai B. Yan L. Luo Y. Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int. Immunopharmacol. 2024 128 111548 10.1016/j.intimp.2024.111548 38244518
    [Google Scholar]
  37. Zhang J. Liu S. Chen X. Xu X. Xu F. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy. Biomed. Pharmacother. 2023 166 115336 10.1016/j.biopha.2023.115336 37591126
    [Google Scholar]
  38. Zhao K. Huang J. Zhao Y. Wang S. Xu J. Yin K. Targeting STING in cancer: Challenges and emerging opportunities. Biochim. Biophys. Acta Rev. Cancer 2023 1878 6 188983 10.1016/j.bbcan.2023.188983
    [Google Scholar]
  39. Shiraha H. Iwamuro M. Okada H. Hepatic stellate cells in liver tumor. Adv. Exp. Med. Biol. 2020 1234 43 56 10.1007/978‑3‑030‑37184‑5_4
    [Google Scholar]
  40. Wang R.C. Wang Z. Precision medicine: Disease subtyping and tailored treatment. Cancers 2023 15 15 3837 10.3390/cancers15153837 37568653
    [Google Scholar]
  41. Hamdy N.M. Basalious E.B. El-Sisi M.G. Nasr M. Kabel A.M. Nossier E.S. Abadi A.H. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: A step-toward personalized medicine. Curr. Med. Res. Opin. 2024 40 11 1943 1961 10.1080/03007995.2024.2416985 39412377
    [Google Scholar]
  42. Lassen U.N. Makaroff L.E. Stenzinger A. Italiano A. Vassal G. Garcia-Foncillas J. Avouac B. Precision oncology: A clinical and patient perspective. Future Oncol. 2021 17 30 3995 4009 10.2217/fon‑2021‑0688 34278817
    [Google Scholar]
  43. Martínez-Castillo M. Gómez-Romero L. Tovar H. Olarte-Carrillo I. García-Laguna A. Barranco-Lampón G. De la Cruz-Rosas A. Martínez-Tovar A. Hernández-Zavala A. Córdova E.J. Genetic alterations in the BCR-ABL1 fusion gene related to imatinib resistance in chronic myeloid leukemia. Leuk. Res. 2023 131 107325 10.1016/j.leukres.2023.107325 37302352
    [Google Scholar]
  44. Roskoski R. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacol. Res. 2022 178 106156 10.1016/j.phrs.2022.106156 35257901
    [Google Scholar]
  45. Setton J. Zinda M. Riaz N. Durocher D. Zimmermann M. Koehler M. Reis-Filho J.S. Powell S.N. Synthetic lethality in cancer therapeutics: The next generation. Cancer Discov. 2021 11 7 1626 1635 10.1158/2159‑8290.CD‑20‑1503 33795234
    [Google Scholar]
  46. Allemailem K. Almatroudi A. Alrumaihi F. Alradhi A. Theyab A. Algahtani M. Alhawas M. Dobie G. Moawad A. Rahmani A. Khan A. Current updates of CRISPR/Cas system and anti-CRISPR proteins: Innovative applications to improve the genome editing strategies. Int. J. Nanomedicine 2024 19 10185 10212 10.2147/IJN.S479068 39399829
    [Google Scholar]
  47. Pandya A. Shah Y. Kothari N. Postwala H. Shah A. Parekh P. Chorawala M.R. The future of cancer immunotherapy: DNA vaccines leading the way. Med. Oncol. 2023 40 7 200 10.1007/s12032‑023‑02060‑3 37294501
    [Google Scholar]
  48. Eusébio D. Neves A.R. Costa D. Biswas S. Alves G. Cui Z. Sousa Â. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov. Today 2021 26 11 2575 2592 10.1016/j.drudis.2021.06.008 34214667
    [Google Scholar]
  49. Chakravarty D. Solit D.B. Clinical cancer genomic profiling. Nat. Rev. Genet. 2021 22 8 483 501 10.1038/s41576‑021‑00338‑8 33762738
    [Google Scholar]
  50. Nikanjam M. Kato S. Kurzrock R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022 15 1 131 10.1186/s13045‑022‑01351‑y 36096847
    [Google Scholar]
  51. Fu S.W. Tang C. Tan X. Srivastava S. Liquid biopsy for early cancer detection: Technological revolutions and clinical dilemma. Expert Rev. Mol. Diagn. 2024 24 10 937 955 10.1080/14737159.2024.2408744 39360748
    [Google Scholar]
  52. Pirmohamed M. Pharmacogenomics: Current status and future perspectives. Nat. Rev. Genet. 2023 24 6 350 362 10.1038/s41576‑022‑00572‑8 36707729
    [Google Scholar]
  53. Carr D.F. Turner R.M. Pirmohamed M. Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response. Br. J. Clin. Pharmacol. 2021 87 2 237 255 10.1111/bcp.14407 32501544
    [Google Scholar]
  54. Khan M.I. Hossain M.I. Hossain M.K. Rubel M.H.K. Hossain K.M. Mahfuz A.M.U.B. Anik M.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl. Bio Mater. 2022 5 3 971 1012 10.1021/acsabm.2c00002 35226465
    [Google Scholar]
  55. Thakuria A. Kataria B. Gupta D. Nanoparticle-based methodologies for targeted drug delivery-an insight. J. Nanopart. Res. 2021 23 4 87 10.1007/s11051‑021‑05190‑9
    [Google Scholar]
  56. Adhana S. Chaudhary J. Mavi A.K. Monoclonal antibodies for targeted drug delivery. Nanoparticles in Cancer Theranostics. Boca Raton, Florida CRC Press 2024 270 293 10.1201/9781003463191‑16
    [Google Scholar]
  57. Adekiya T.A. Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat. Res. Commun 2023 37 100778 10.1016/j.ctarc.2023.100778] 37992539
    [Google Scholar]
  58. Belete T.M. The current status of gene therapy for the treatment of cancer. Biologics 2021 15 67 77 10.2147/BTT.S302095
    [Google Scholar]
  59. Colas K. Bindl D. Suga H. Selection of nucleotide-encoded mass libraries of macrocyclic peptides for inaccessible drug targets. Chem. Rev. 2024 124 21 12213 12241 10.1021/acs.chemrev.4c00422 39451037
    [Google Scholar]
  60. Larson R.C. Maus M.V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 2021 21 3 145 161 10.1038/s41568‑020‑00323‑z 33483715
    [Google Scholar]
  61. Safarzadeh Kozani P. Naseri A. Mirarefin S.M.J. Salem F. Nikbakht M. Evazi Bakhshi S. Safarzadeh Kozani P. Nanobody-based CAR-T cells for cancer immunotherapy. Biomark. Res. 2022 10 1 24 10.1186/s40364‑022‑00371‑7 35468841
    [Google Scholar]
  62. Gong L. Li Y. Cui K. Chen Y. Hong H. Li J. Li D. Yin Y. Wu Z. Huang Z. Nanobody‐engineered natural killer cell conjugates for solid tumor adoptive immunotherapy. Small 2021 17 45 2103463 10.1002/smll.202103463 34761524
    [Google Scholar]
  63. Yilmaz A. Cui H. Caligiuri M.A. Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J. Hematol. Oncol. 2020 13 1 168 10.1186/s13045‑020‑00998‑9 33287875
    [Google Scholar]
  64. Smith R. Shen R. Complexities in comparing the impact of costimulatory domains on approved CD19 CAR functionality. J. Transl. Med. 2023 21 1 515 10.1186/s12967‑023‑04372‑4 37518011
    [Google Scholar]
  65. Yu T. Yu S. Xiang Y. Lu K.H. Sun M. Revolution of CAR engineering for next-generation immunotherapy in solid tumors. Front. Immunol. 2022 13 936496 10.3389/fimmu.2022.936496 35903099
    [Google Scholar]
  66. Zhang B. Zhu J. Su H. Toward the third generation artificial intelligence. Sci. China Inf. Sci. 2023 66 2 121101 10.1007/s11432‑021‑3449‑x
    [Google Scholar]
  67. Zhang S. Gu C. Huang L. Wu H. Shi J. Zhang Z. Zhou Y. Zhou J. Gao Y. Liu J. Leng Y. Liu X. Zhang Q. Huang L. Tong X. Young K.H. Li J. Zhu H. Zhang T. The third-generation anti-CD30 CAR T-cells specifically homing to the tumor and mediating powerful antitumor activity. Sci. Rep. 2022 12 1 10488 10.1038/s41598‑022‑14523‑0 35729339
    [Google Scholar]
  68. Kheirkhah A.H. Habibi S. Yousefi M.H. Mehri S. Ma B. Saleh M. Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front. Immunol. 2024 15 1460437 10.3389/fimmu.2024.1460437 39411712
    [Google Scholar]
  69. Abreu T.R. Fonseca N.A. Gonçalves N. Moreira J.N. Current challenges and emerging opportunities of CAR-T cell therapies. J. Control. Release 2020 319 246 261 10.1016/j.jconrel.2019.12.047 31899268
    [Google Scholar]
  70. Chung J.B. Brudno J.N. Borie D. Kochenderfer J.N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 2024 24 11 830 845 10.1038/s41577‑024‑01035‑3 38831163
    [Google Scholar]
  71. Sengsayadeth S. Savani B.N. Oluwole O. Dholaria B. Overview of approved CAR‐T therapies, ongoing clinical trials, and its impact on clinical practice. eJHaem 2022 3 S1 6 10 10.1002/jha2.338 35844299
    [Google Scholar]
  72. Mirvis E. Benjamin R. Are we there yet? CAR ‐T therapy in multiple myeloma. Br. J. Haematol. 2024 205 6 2175 2189 10.1111/bjh.19896 39558776
    [Google Scholar]
  73. Milone M.C. Xu J. Chen S.J. Collins M.A. Zhou J. Powell D.J. Melenhorst J.J. Engineering-enhanced CAR T cells for improved cancer therapy. Nat. Can. 2021 2 8 780 793 10.1038/s43018‑021‑00241‑5 34485921
    [Google Scholar]
  74. Mitra A. Barua A. Huang L. Ganguly S. Feng Q. He B. From bench to bedside: The history and progress of CAR T cell therapy. Front. Immunol. 2023 14 1188049 10.3389/fimmu.2023.1188049 37256141
    [Google Scholar]
  75. Mavi A.K. Gaur S. Gaur G. Babita; Jindal, P.; Kumar, N.; Kumar, U. CAR T-cell therapy: Reprogramming patient’s immune cell to treat cancer. Cell. Signal. 2023 105 110638 10.1016/j.cellsig.2023.110638 36822565
    [Google Scholar]
  76. Bilotta M.T. Antignani A. Fitzgerald D.J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol. 2022 13 954992 10.3389/fimmu.2022.954992 36341428
    [Google Scholar]
  77. Daei Sorkhabi A. Mohamed Khosroshahi L. Sarkesh A. Mardi A. Aghebati-Maleki A. Aghebati-Maleki L. Baradaran B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front. Immunol. 2023 14 1113882 10.3389/fimmu.2023.1113882 37020537
    [Google Scholar]
  78. Joshi D.C. Sharma A. Prasad S. Singh K. Kumar M. Sherawat K. Tuli H.S. Gupta M. Novel therapeutic agents in clinical trials: Emerging approaches in cancer therapy. Discov. Oncol. 2024 15 1 342 10.1007/s12672‑024‑01195‑7 39127974
    [Google Scholar]
  79. Cronk R.J. Zurko J. Shah N.N. Bispecific chimeric antigen receptor T cell therapy for B cell malignancies and multiple myeloma. Cancers 2020 12 9 2523 10.3390/cancers12092523 32899464
    [Google Scholar]
  80. Li Y. Basar R. Wang G. Liu E. Moyes J.S. Li L. Kerbauy L.N. Uprety N. Fathi M. Rezvan A. Banerjee P.P. Muniz-Feliciano L. Laskowski T.J. Ensley E. Daher M. Shanley M. Mendt M. Acharya S. Liu B. Biederstädt A. Rafei H. Guo X. Melo Garcia L. Lin P. Ang S. Marin D. Chen K. Bover L. Champlin R.E. Varadarajan N. Shpall E.J. Rezvani K. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape. Nat. Med. 2022 28 10 2133 2144 10.1038/s41591‑022‑02003‑x 36175679
    [Google Scholar]
  81. Schipper L.J. Zeverijn L.J. Garnett M.J. Voest E.E. Can drug repurposing accelerate precision oncology? Cancer Discov. 2022 12 7 1634 1641 10.1158/2159‑8290.CD‑21‑0612 35642948
    [Google Scholar]
  82. Jin H. Wang L. Bernards R. Rational combinations of targeted cancer therapies: Background, advances and challenges. Nat. Rev. Drug Discov. 2023 22 3 213 234 10.1038/s41573‑022‑00615‑z 36509911
    [Google Scholar]
  83. Podhorecka M. Metformin - its anti-cancer effects in hematologic malignancies. Oncol. Rev. 2021 15 1 514 10.4081/oncol.2021.514 33747367
    [Google Scholar]
  84. Fousek K. Horn L.A. Palena C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol. Ther. 2021 219 107692 10.1016/j.pharmthera.2020.107692 32980444
    [Google Scholar]
  85. Zaman F.Y. Orchard S.G. Haydon A. Zalcberg J.R. Non-aspirin non-steroidal anti-inflammatory drugs in colorectal cancer: A review of clinical studies. Br. J. Cancer 2022 127 10 1735 1743 10.1038/s41416‑022‑01882‑8 35764787
    [Google Scholar]
  86. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Doig A. Guilliams T. Latimer J. McNamee C. Norris A. Sanseau P. Cavalla D. Pirmohamed M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  87. Wu Y.L. Lin Z.J. Li C.C. Lin X. Shan S.K. Guo B. Zheng M.H. Li F. Yuan L.Q. Li Z. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023 8 1 98 10.1038/s41392‑023‑01333‑7 36864020
    [Google Scholar]
  88. Griñán-Ferré C. Bellver-Sanchis A. Guerrero A. Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol. Res. 2024 205 107247 10.1016/j.phrs.2024.107247 38834164
    [Google Scholar]
  89. Berdasco M. Esteller M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2019 20 2 109 127 10.1038/s41576‑018‑0074‑2 30479381
    [Google Scholar]
  90. Howlader N. Forjaz G. Mooradian M.J. Meza R. Kong C.Y. Cronin K.A. Mariotto A.B. Lowy D.R. Feuer E.J. The effect of advances in lung‐cancer treatment on population mortality. N. Engl. J. Med. 2020 383 7 640 649 10.1056/NEJMoa1916623 32786189
    [Google Scholar]
  91. Benincasa G. Vasco M. Corrado A. Sansone A. Picascia A. Napoli C. Epigenetic‐based therapy in allogenic hematopoietic stem cell transplantation: Novel opportunities for personalized treatment. Clin. Transplant. 2021 35 8 14306 10.1111/ctr.14306 33792965
    [Google Scholar]
  92. Davalos V. Esteller M. Cancer epigenetics in clinical practice. CA Cancer J. Clin. 2023 73 4 376 424 10.3322/caac.21765 36512337
    [Google Scholar]
  93. Ong S. O’Brien J. Medhurst E. Lawrentschuk N. Murphy D. Azad A. Current treatment options for newly diagnosed metastatic hormone-sensitive prostate cancer—a narrative review. Transl. Androl. Urol. 2021 10 10 3918 3930 10.21037/tau‑20‑1118 34804835
    [Google Scholar]
  94. Bhole R.P. Karche P.M. Gurav S.S. Chikhale R.V. Breaking through resistance in mCRPC: Enzalutamide analogues as effective anticancer agents for enhanced male survival. Results Chem. 2023 6 101143 10.1016/j.rechem.2023.101143
    [Google Scholar]
  95. Varghese T.P. John A. Mathew J. Revolutionizing cancer treatment: The role of radiopharmaceuticals in modern cancer therapy. Precis. Radiat. Oncol. 2024 8 3 145 152 10.1002/pro6.1239 40336977
    [Google Scholar]
  96. Ebbers S.C. Barentsz M.W. de Vries-Huizing D.M.V. Versleijen M.W.J. Klompenhouwer E.G. Tesselaar M.E.T. Stokkel M.P.M. Brabander T. Hofland J. Moelker A. van Leeuwaarde R.S. Smits M.L.J. Braat A.J.A.T. Lam M.G.E.H. Intra-arterial peptide-receptor radionuclide therapy for neuro-endocrine tumour liver metastases: An in-patient randomised controlled trial (LUTIA). Eur. J. Nucl. Med. Mol. Imaging 2024 51 4 1121 1132 10.1007/s00259‑023‑06467‑y 37897617
    [Google Scholar]
  97. Fernandes M.R. Aggarwal P. Costa R.G.F. Cole A.M. Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat. Rev. Cancer 2022 22 12 703 722 10.1038/s41568‑022‑00513‑x 36253536
    [Google Scholar]
  98. Gardiner B. Wardill H.R. O’Connor G. Hargrave D. Lett A.M. The impact of fibre and prebiotic interventions on outcomes in cancer and haematopoietic stem cell transplantation: A systematic review. Clin. Nutr. 2024 1 6 39644740
    [Google Scholar]
  99. Poore G.D. Kopylova E. Zhu Q. Carpenter C. Fraraccio S. Wandro S. Kosciolek T. Janssen S. Metcalf J. Song S.J. Kanbar J. Miller-Montgomery S. Heaton R. Mckay R. Patel S.P. Swafford A.D. Knight R. Retracted article: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020 579 7800 567 574 10.1038/s41586‑020‑2095‑1 32214244
    [Google Scholar]
  100. Dohlman A.B. Arguijo Mendoza D. Ding S. Gao M. Dressman H. Iliev I.D. Lipkin S.M. Shen X. The cancer microbiome atlas: A pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe 2021 29 2 281 298.e5 10.1016/j.chom.2020.12.001 33382980
    [Google Scholar]
  101. Nejman D. Livyatan I. Fuks G. Gavert N. Zwang Y. Geller L.T. Rotter-Maskowitz A. Weiser R. Mallel G. Gigi E. Meltser A. Douglas G.M. Kamer I. Gopalakrishnan V. Dadosh T. Levin-Zaidman S. Avnet S. Atlan T. Cooper Z.A. Arora R. Cogdill A.P. Khan M.A.W. Ologun G. Bussi Y. Weinberger A. Lotan-Pompan M. Golani O. Perry G. Rokah M. Bahar-Shany K. Rozeman E.A. Blank C.U. Ronai A. Shaoul R. Amit A. Dorfman T. Kremer R. Cohen Z.R. Harnof S. Siegal T. Yehuda-Shnaidman E. Gal-Yam E.N. Shapira H. Baldini N. Langille M.G.I. Ben-Nun A. Kaufman B. Nissan A. Golan T. Dadiani M. Levanon K. Bar J. Yust-Katz S. Barshack I. Peeper D.S. Raz D.J. Segal E. Wargo J.A. Sandbank J. Shental N. Straussman R. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 2020 368 6494 973 980 10.1126/science.aay9189 32467386
    [Google Scholar]
  102. Kaur R. Bhardwaj A. Gupta S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023 50 11 9663 9676 10.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  103. Ganesh K. Massagué J. Targeting metastatic cancer. Nat. Med. 2021 27 1 34 44 10.1038/s41591‑020‑01195‑4 33442008
    [Google Scholar]
  104. Nayarisseri A. Khandelwal R. Tanwar P. Madhavi M. Sharma D. Thakur G. Speck-Planche A. Singh S.K. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr. Drug Targets 2021 22 6 631 655 10.2174/18735592MTEzsMDMnz 33397265
    [Google Scholar]
  105. Athar M. Manhas A. Rana N. Irfan A. Computational and bioinformatics tools for understanding disease mechanisms. Biocell 2024 48 6 935 944 10.32604/biocell.2024.049891
    [Google Scholar]
  106. Sebastian A.M. Peter D. Artificial intelligence in cancer research: Trends, challenges and future directions. Life 2022 12 12 1991 10.3390/life12121991 36556356
    [Google Scholar]
  107. Joint E.S. EACR 2023 congress. Mol. Oncol. 2023 17 1 1 597
    [Google Scholar]
  108. Lu Y. Gan L. Di S. Nie F. Shi H. Wang R. Yang F. Qin W. Wen W. The role of phase separation in RNA modification: Both cause and effect. Int. J. Biol. Macromol. 2024 280 Pt 3 135907 10.1016/j.ijbiomac.2024.135907 39322163
    [Google Scholar]
  109. Baltoumas F.A. Zafeiropoulou S. Karatzas E. Koutrouli M. Thanati F. Voutsadaki K. Gkonta M. Hotova J. Kasionis I. Hatzis P. Pavlopoulos G.A. Biomolecule and bioentity interaction databases in systems biology: A comprehensive review. Biomolecules 2021 11 8 1245 10.3390/biom11081245 34439912
    [Google Scholar]
  110. Bai Q. Liu S. Tian Y. Xu T. Banegas-Luna A.J. Pérez-Sánchez H. Huang J. Liu H. Yao X. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 3 1581 10.1002/wcms.1581
    [Google Scholar]
  111. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  112. Koborova O.N. Filimonov D.A. Zakharov A.V. Lagunin A.A. Ivanov S.M. Kel A. Poroikov V.V. In silico method for identification of promising anticancer drug targets. SAR QSAR Environ. Res. 2009 20 7-8 755 766 10.1080/10629360903438628 20024808
    [Google Scholar]
  113. Thirunavukkarasu M.K. Suriya U. Rungrotmongkol T. Karuppasamy R. In silico screening of available drugs targeting non-small cell lung cancer targets: A drug repurposing approach. Pharmaceutics 2021 14 1 59 10.3390/pharmaceutics14010059 35056955
    [Google Scholar]
  114. Saraf S. De A. Tripathy B.K. Effective use of computational biology and artificial intelligence in the domain of medical oncology. Computational Intelligence for Oncology and Neurological Disorders. Boca Raton, Florida CRC Press 2024 228 252 10.1201/9781003450153‑17
    [Google Scholar]
  115. Bartha Á. Győrffy B. TNMplot. com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 2021 22 5 2622 10.3390/ijms22052622 33807717
    [Google Scholar]
  116. Sakaguchi T. Iketani A. Esumi S. Esumi M. Suzuki Y. Ito K. Fujiwara K. Nishii Y. Katsuta K. Yasui H. Taguchi O. Hataji O. Clinical importance of the range of detectable variants between the Oncomine Dx target test and a conventional single-gene test for EGFR mutation. Sci. Rep. 2023 13 1 13759 10.1038/s41598‑023‑40271‑w 37612335
    [Google Scholar]
  117. Li C. Tang Z. Zhang W. Ye Z. Liu F. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res. 2021 49 W1 W242 W246 10.1093/nar/gkab418 34050758
    [Google Scholar]
  118. Khan M.M. Mohsen M.T. Malik M.Z. Bagabir S.A. Alkhanani M.F. Haque S. Serajuddin M. Bharadwaj M. Identification of potential key genes in prostate cancer with gene expression, pivotal pathways and regulatory networks analysis using integrated bioinformatics methods. Genes 2022 13 4 655 10.3390/genes13040655 35456461
    [Google Scholar]
  119. Nshizirungu J.P. Bennis S. Mellouki I. Sekal M. Benajah D.A. Lahmidani N. El Bouhaddouti H. Ibn Majdoub K. Ibrahimi S.A. Celeiro S.P. Viana-Pereira M. Munari F.F. Ribeiro G.G. Duval V. Santana I. Reis R.M. Reproduction of the cancer genome atlas (TCGA) and Asian cancer research group (ACRG) gastric cancer molecular classifications and their association with clinicopathological characteristics and overall survival in moroccan patients. Dis. Markers 2021 2021 1 1 12 10.1155/2021/9980410 34367379
    [Google Scholar]
  120. Ashok G. Ramaiah S. A critical review of datasets and computational suites for improving cancer theranostics and biomarker discovery. Med. Oncol. 2022 39 12 206 10.1007/s12032‑022‑01815‑8 36175717
    [Google Scholar]
  121. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  122. Hasan M.R. Paul B.K. Ahmed K. Bhuyian T. Design protein-protein interaction network and protein-drug interaction network for common cancer diseases: A bioinformatics approach. Inform. Med. Unlocked 2020 18 100311 10.1016/j.imu.2020.100311
    [Google Scholar]
  123. Majeed A. Mukhtar S. Protein–protein interaction network exploration using cytoscape. In: Protein-Protein Interactions: Methods and Protocols. Cham Springer 2023 419 427 10.1007/978‑1‑0716‑3327‑4_32
    [Google Scholar]
  124. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  125. Jeusset L.M. McManus K.J. Employing cross-species approaches to construct humanized genetic interaction networks. Methods Mol. Biol. 2021 2381 115 133 10.1007/978‑1‑0716‑1740‑3_6
    [Google Scholar]
  126. Doncheva N.T. Morris J.H. Holze H. Kirsch R. Nastou K.C. Cuesta-Astroz Y. Rattei T. Szklarczyk D. von Mering C. Jensen L.J. Cytoscape stringApp 2.0: Analysis and visualization of heterogeneous biological networks. J. Proteome Res. 2023 22 2 637 646 10.1021/acs.jproteome.2c00651 36512705
    [Google Scholar]
  127. Lan Y. Peng Q. Fu B. Liu H. Effective analysis of thyroid toxicity and mechanisms of acetyltributyl citrate using network toxicology, molecular docking, and machine learning strategies. Toxicology 2025 511 154029 10.1016/j.tox.2024.154029 39657862
    [Google Scholar]
  128. Tu H. Hu Q. Ma Y. Huang J. Luo H. Jiang L. Zhang S. Jiang C. Lai H. Liu J. Chen J. Guo L. Yang G. Xu K. Chi H. Chen H. Deciphering the tumour microenvironment of clear cell renal cell carcinoma: Prognostic insights from programmed death genes using machine learning. J. Cell. Mol. Med. 2024 28 13 18524 10.1111/jcmm.18524 39011666
    [Google Scholar]
  129. Stanzione F. Giangreco I. Cole J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem. 2021 60 273 343 10.1016/bs.pmch.2021.01.004 34147204
    [Google Scholar]
  130. Mahfuz A.M.U.B. Khan M.A. Biswas S. Afrose S. Mahmud S. Mohammed Bahadur N. Ahmed F. In search of novel inhibitors of anti-cancer drug target fibroblast growth factor receptors: Insights from virtual screening, molecular docking, and molecular dynamics. Arab. J. Chem. 2022 15 7 103882 10.1016/j.arabjc.2022.103882
    [Google Scholar]
  131. Boittier E.D. Tang Y.Y. Buckley M.E. Schuurs Z.P. Richard D.J. Gandhi N.S. Assessing molecular docking tools to guide targeted drug discovery of CD38 inhibitors. Int. J. Mol. Sci. 2020 21 15 5183 10.3390/ijms21155183 32707824
    [Google Scholar]
  132. Verrelle P. Gestraud P. Poyer F. Soria A. Tessier S. Lescure A. Anthony E. Corbé M. Heinrich S. Beauvineau C. Chaput L. Granzhan A. Piguel S. Perez F. Teulade-Fichou M.P. Megnin-Chanet F. Del Nery E. Integrated high-throughput screening and large-scale isobolographic analysis to accelerate the discovery of radiosensitizers with greater selectivity for cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 2024 118 5 1294 1307 10.1016/j.ijrobp.2023.09.044 37778425
    [Google Scholar]
  133. Goodsell D.S. Sanner M.F. Olson A.J. Forli S. The AutoDock suite at 30. Protein Sci. 2021 30 1 31 43 10.1002/pro.3934 32808340
    [Google Scholar]
  134. Opo F.A.D.M. Rahman M.M. Ahammad F. Ahmed I. Bhuiyan M.A. Asiri A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep. 2021 11 1 4049 10.1038/s41598‑021‑83626‑x 33603068
    [Google Scholar]
  135. Zhang H. Qin C. An C. Zheng X. Wen S. Chen W. Liu X. Lv Z. Yang P. Xu W. Gao W. Wu Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer 2021 20 1 126 10.1186/s12943‑021‑01431‑6 34598686
    [Google Scholar]
  136. Lam S. Thomas J.C. Jackson S.P. Genome-aware annotation of CRISPR guides validates targets in variant cell lines and enhances discovery in screens. Genome Med. 2024 16 1 139 10.1186/s13073‑024‑01414‑4 39593080
    [Google Scholar]
  137. Esmaeili Anvar N. Lin C. Ma X. Wilson L.L. Steger R. Sangree A.K. Colic M. Wang S.H. Doench J.G. Hart T. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nat. Commun. 2024 15 1 3577 10.1038/s41467‑024‑47795‑3 38678031
    [Google Scholar]
  138. Qin M. Deng C. Wen L. Luo G. Meng Y. CRISPR-Cas and CRISPR-based screening system for precise gene editing and targeted cancer therapy. J. Transl. Med. 2024 22 1 516 10.1186/s12967‑024‑05235‑2 38816739
    [Google Scholar]
  139. Badar M.S. Shamsi S. Ahmed J. Alam M.A. Molecular dynamics simulations: Concept, methods, and applications. Transdisciplinarity Integrated Science. Cham Springer 2022 5 10.1007/978‑3‑030‑94651‑7_7
    [Google Scholar]
  140. Kumar M. Tripathi M.K. Kaur P. Molecular dynamics and its significance in drug discovery. In: Structure-Based Drug Design. Cham Springer 2024 149 175 10.1007/978‑3‑031‑69162‑1_6
    [Google Scholar]
  141. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  142. Hassan M.I. Anjum D. Mohammad T. Alam M. Khan M.S. Shahwan M. Shamsi A. Yadav D.K. Integrated virtual screening and MD simulation study to discover potential inhibitors of Lyn-kinase: Targeting cancer therapy. J. Biomol. Struct. Dyn. 2023 41 20 10558 10568 10.1080/07391102.2022.2154849 36495308
    [Google Scholar]
  143. Singh A. Yadav S. Palei N.N. Molecular simulation-based technology for antibody–drug conjugates for tumor targeting: Current scenario and future insights. Computat. Drug Del 2024 383 436 10.1515/9783111208671‑017
    [Google Scholar]
  144. Akash S. Islam M.R. Bhuiyan A.A. Islam M.N. Bayıl I. Saleem R.M. Albadrani G.M. Al-Ghadi M.Q. Abdel-Daim M.M. In silico evaluation of anti-colorectal cancer inhibitors by Resveratrol derivatives targeting Armadillo repeats domain of APC: Molecular docking and molecular dynamics simulation. Front. Oncol. 2024 14 1360745 10.3389/fonc.2024.1360745 38746675
    [Google Scholar]
  145. Zhang Q. Zhao N. Meng X. Yu F. Yao X. Liu H. The prediction of protein–ligand unbinding for modern drug discovery. Expert Opin. Drug Discov. 2022 17 2 191 205 10.1080/17460441.2022.2002298 34731059
    [Google Scholar]
  146. Das T. Mukhopadhyay C. Molecular dynamics simulations suggest Thiosemicarbazones can bind p53 cancer mutant R175H. Biochim. Biophys. Acta. Proteins Proteomics 2023 1871 3 140903 10.1016/j.bbapap.2023.140903 36731759
    [Google Scholar]
  147. Hassanin S.O. Hegab A.M.M. Mekky R.H. Said M.A. Khalil M.G. Hamza A.A. Amin A. Combining in vitro, in vivo, and network pharmacology assays to identify targets and molecular mechanisms of Spirulina-derived biomolecules against breast Cancer. Mar. Drugs 2024 22 7 328 10.3390/md22070328 39057437
    [Google Scholar]
  148. Cagle E. Lake B. Banerjee A. Cuffee J. Banerjee N. Gilmartin D. Liverman M. Brown S. Armstrong E. Bhattacharya S. Ghosh S. Mandal T. Banerjee H. Analysis of differential gene expression and core canonical pathways involved in the epithelial to mesenchymal transition of triple negative breast cancer cells by ingenuity pathway analysis. Comput. Mol. Biosci. 2023 13 2 21 34 10.4236/cmb.2023.132002 37538932
    [Google Scholar]
  149. Hephzibah Cathryn R. Udhaya Kumar S. Younes S. Zayed H. George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. Adv. Protein Chem. Struct. Biol. 2022 131 85 164 10.1016/bs.apcsb.2022.05.002 35871897
    [Google Scholar]
  150. Chakraborty S. Sharma G. Karmakar S. Banerjee S. Multi-omics approaches in cancer biology: New era in cancer therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 5 167120 10.1016/j.bbadis.2024.167120 38484941
    [Google Scholar]
  151. Keerti Kumar Y. Anil Kumar; Ajay Kumar, S. A systems biology approach towards oral cancer using computational tools and techniques. Chemom. Intell. Lab. Syst. 2022 231 104709 10.1016/j.chemolab.2022.104709
    [Google Scholar]
  152. Dwane L. Behan F.M. Gonçalves E. Lightfoot H. Yang W. van der Meer D. Shepherd R. Pignatelli M. Iorio F. Garnett M.J. Project Score database: A resource for investigating cancer cell dependencies and prioritizing therapeutic targets. Nucleic Acids Res. 2021 49 D1 D1365 D1372 10.1093/nar/gkaa882 33068406
    [Google Scholar]
  153. Sondka Z. Dhir N.B. Carvalho-Silva D. Jupe S. Madhumita; McLaren, K.; Starkey, M.; Ward, S.; Wilding, J.; Ahmed, M.; Argasinska, J.; Beare, D.; Chawla, M.S.; Duke, S.; Fasanella, I.; Neogi, A.G.; Haller, S.; Hetenyi, B.; Hodges, L.; Holmes, A.; Lyne, R.; Maurel, T.; Nair, S.; Pedro, H.; Sangrador-Vegas, A.; Schuilenburg, H.; Sheard, Z.; Yong, S.Y.; Teague, J. COSMIC: A curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 2024 52 D1 D1210 D1217 10.1093/nar/gkad986 38183204
    [Google Scholar]
  154. Ahmad R.M. Ali B.R. Al-Jasmi F. Sinnott R.O. Al Dhaheri N. Mohamad M.S. A review of genetic variant databases and machine learning tools for predicting the pathogenicity of breast cancer. Brief. Bioinform. 2023 25 1 bbad479 10.1093/bib/bbad479 38149678
    [Google Scholar]
  155. Wang T. Ruan S. Zhao X. Shi X. Teng H. Zhong J. You M. Xia K. Sun Z. Mao F. OncoVar: An integrated database and analysis platform for oncogenic driver variants in cancers. Nucleic Acids Res. 2021 49 D1 D1289 D1301 10.1093/nar/gkaa1033 33179738
    [Google Scholar]
  156. Lutz S. D’Angelo A. Hammerl S. Schmutz M. Claus R. Fischer N.M. Unveiling the digital evolution of molecular tumor boards. Target. Oncol. 2024 ••• 1 17 39609355
    [Google Scholar]
  157. He X. Liu X. Zuo F. Shi H. Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Seminars in Cancer Biology. Amsterdam, Netherlands Elsevier 2023 187 200 10.1016/j.semcancer.2022.12.009
    [Google Scholar]
  158. Xu L. Ru X. Song R. Application of machine learning for drug–target interaction prediction. Front. Genet. 2021 12 680117 10.3389/fgene.2021.680117 34234813
    [Google Scholar]
  159. Khan M. Shiwlani A. Qayyum M.U. Sherani A.M.K. Hussain H.K. AI-powered healthcare revolution: An extensive examination of innovative methods in cancer treatment. Bullet J. Multidisip Ilmu 2024 3 1 87 98
    [Google Scholar]
  160. Melarkode N. Srinivasan K. Qaisar S.M. Plawiak P. AI-powered diagnosis of skin cancer: A contemporary review, open challenges and future research directions. Cancers 2023 15 4 1183 10.3390/cancers15041183 36831525
    [Google Scholar]
  161. Liu Y. Wu W. Cai C. Zhang H. Shen H. Han Y. Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct. Target. Ther. 2023 8 1 160 10.1038/s41392‑023‑01419‑2 37045827
    [Google Scholar]
  162. Proietto M. Crippa M. Damiani C. Pasquale V. Sacco E. Vanoni M. Gilardi M. Tumor heterogeneity: Preclinical models, emerging technologies, and future applications. Front. Oncol. 2023 13 1164535 10.3389/fonc.2023.1164535 37188201
    [Google Scholar]
  163. din, N.M.; Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 2022 149 106073 10.1016/j.compbiomed.2022.106073 36103745
    [Google Scholar]
  164. yousif, F.A.; Alzain, A.A.; Alraih, A.M.; Ibraheem, W. Repurposing of approved drugs for targeting CDK4/6 and aromatase protein using molecular docking and molecular dynamics studies. PLoS One 2023 18 9 0291256 10.1371/journal.pone.0291256 37682937
    [Google Scholar]
  165. Shah I.M. Ali A. Wani R.F.C. Malla B.A. Dar M.A. Wali A. Computational and pharmacogenomic resources. In: Pharmacogenomics. Amsterdam, Netherlands Elsevier 2023 345 362 10.1016/B978‑0‑443‑15336‑5.00005‑1
    [Google Scholar]
  166. Hernández-Lemus E. Martínez-García M. Pathway-based drug-repurposing schemes in cancer: The role of translational bioinformatics. Front. Oncol. 2021 10 605680 10.3389/fonc.2020.605680 33520715
    [Google Scholar]
  167. Mourelatou E.A. Iosif E. Galatou E. Sarigiannis Y. Vlasiou M.C. Zacharia L. Application of artificial intelligence in pharmaceutical development. In: Novel Formulations and Future Trends. Amsterdam, Netherlands Elsevier 2024 415 451 10.1016/B978‑0‑323‑91816‑9.00009‑6
    [Google Scholar]
  168. Kanakaveti V. Shanmugam A. Ramakrishnan C. Anoosha P. Sakthivel R. Rayala S.K. Gromiha M.M. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. Adv. Protein Chem. Struct. Biol. 2020 121 25 47 10.1016/bs.apcsb.2019.11.013 32312424
    [Google Scholar]
  169. Bhunia S.S. Saxena M. Saxena A.K. Ligand-and structure-based virtual screening in drug discovery. In: Biophysical and Computational Tools in Drug Discovery. Cham Springer 2021 281 339 10.1007/7355_2021_130
    [Google Scholar]
  170. Achary P.G.R. Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: A review. Mini Rev. Med. Chem. 2020 20 14 1375 1388 10.2174/1389557520666200429102334 32348219
    [Google Scholar]
  171. Singh P. Kumar V. Gupta S.K. Kumari G. Verma M. Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: A review. Med. Oncol. 2021 38 1 10 10.1007/s12032‑021‑01462‑5 33452624
    [Google Scholar]
  172. da Rocha M.N. de Sousa D.S. da Silva Mendes F.R. Dos Santos H.S. Marinho G.S. Marinho M.M. Ligand and structurebased virtual screening approaches in drug discovery: Minireview Mol. Divers 2024 1 11 39223358
    [Google Scholar]
  173. Li X. Li Y. Wang Y. Liu F. Liu Y. Liang J. Zhan R. Wu Y. Ren H. Zhang X. Liu J. Sinensetin suppresses angiogenesis in liver cancer by targeting the VEGF/VEGFR2/AKT signaling pathway. Exp. Ther. Med. 2022 23 5 360 10.3892/etm.2022.11287 35493423
    [Google Scholar]
  174. Agamah F.E. Mazandu G.K. Hassan R. Bope C.D. Thomford N.E. Ghansah A. Chimusa E.R. Computational/in silico methods in drug target and lead prediction. Brief. Bioinform. 2020 21 5 1663 1675 10.1093/bib/bbz103 31711157
    [Google Scholar]
  175. Hirlekar B.U. Nuthi A. Singh K.D. Murty U.S. Dixit V.A. An overview of compound properties, multiparameter optimization, and computational drug design methods for PARP-1 inhibitor drugs. Eur. J. Med. Chem. 2023 252 115300 10.1016/j.ejmech.2023.115300 36989813
    [Google Scholar]
  176. Chen J. Lin A. Luo P. Advancing pharmaceutical research: A comprehensive review of cutting-edge tools and technologies. Curr. Pharm. Anal. 2024 21 1 1 19 10.1016/j.cpan.2024.11.001
    [Google Scholar]
  177. Bhinder B. Gilvary C. Madhukar N.S. Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021 11 4 900 915 10.1158/2159‑8290.CD‑21‑0090 33811123
    [Google Scholar]
  178. Anuyah S Singh MK Nyavor H Advancing clinical trial outcomes using deep learning and predictive modelling: Bridging precision medicine and patient-centered care arXiv Prepr 2024 1 52024
    [Google Scholar]
  179. Akhlaghdoust M. Bordbar S. Nikoohemmat M. Meftah E. Rahimzadegan M. Akbari S. Precision medicine in brain tumors: New approaches. Cham Springer 2024
    [Google Scholar]
  180. Li J. Hu K. Zhou L. Huang J. Zeng S. Xu Z. Yan Y. Spectrum of mesenchymal–epithelial transition aberrations and potential clinical implications: Insights from integrative pancancer analysis. Front. Oncol. 2020 10 560615 10.3389/fonc.2020.560615 33178590
    [Google Scholar]
  181. Bashraheel S.S. Domling A. Goda S.K. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed. Pharmacother. 2020 125 110009 10.1016/j.biopha.2020.110009 32106381
    [Google Scholar]
  182. Aburass S. Dorgham O. Shaqsi J.A. A hybrid machine learning model for classifying gene mutations in cancer using LSTM, BiLSTM, CNN, GRU, and GloVe. Systems and Soft Computing 2024 6 200110 10.1016/j.sasc.2024.200110
    [Google Scholar]
  183. Kuznetsov M. Clairambault J. Volpert V. Improving cancer treatments via dynamical biophysical models. Phys. Life Rev. 2021 39 1 48 10.1016/j.plrev.2021.10.001 34688561
    [Google Scholar]
  184. Micaglio E. Locati E.T. Monasky M.M. Romani F. Heilbron F. Pappone C. Role of pharmacogenetics in adverse drug reactions: An update towards personalized medicine. Front. Pharmacol. 2021 12 651720 10.3389/fphar.2021.651720 33995067
    [Google Scholar]
  185. Marcu L.G. Marcu D.C. Pharmacogenomics and Big Data in medical oncology: Developments and challenges. Ther. Adv. Med. Oncol. 2024 16 17588359241287658 39483136
    [Google Scholar]
  186. Prabhod K.J. The role of machine learning in genomic medicine: Advancements in disease prediction and treatment. J. Deep Learn. Genomic Data Anal. 2022 2 1 1 52
    [Google Scholar]
  187. Poste G. Bring on the biomarkers. Nature 2011 469 7329 156 157 10.1038/469156a 21228852
    [Google Scholar]
  188. Takan I. Karakülah G. Louka A. Pavlopoulou A. “In the light of evolution”: keratins as exceptional tumor biomarkers. PeerJ 2023 11 15099 10.7717/peerj.15099 36949761
    [Google Scholar]
  189. Gerhauser C. Favero F. Risch T. Simon R. Feuerbach L. Assenov Y. Heckmann D. Sidiropoulos N. Waszak S.M. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 2018 34 996 1011 10.1016/j.ccell.2018.10.016
    [Google Scholar]
  190. Zhang Z.W. Zhang K.X. Liao X. Quan Y. Zhang H.Y. Evolutionary screening of precision oncology biomarkers and its applications in prognostic model construction. iScience 2024 27 6 109859 10.1016/j.isci.2024.109859 38799582
    [Google Scholar]
  191. Craig M. Jenner A.L. Namgung B. Lee L.P. Goldman A. Engineering in medicine to address the challenge of cancer drug resistance: From micro-and nanotechnologies to computational and mathematical modeling. Chem. Rev. 2021 121 6 3352 3389 10.1021/acs.chemrev.0c00356 33152247
    [Google Scholar]
  192. Haider T. Pandey V. Banjare N. Gupta P.N. Soni V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep. 2020 72 5 1125 1151 10.1007/s43440‑020‑00138‑7 32700248
    [Google Scholar]
  193. Lin S. Du J. Hao J. Luo X. Wu H. Zhang H. Zhao X. Xu L. Wang B. Identification of prognostic biomarkers among Fam83 family genes in human ovarian cancer through bioinformatic analysis and experimental verification. Cancer Manag. Res. 2021 13 8611 8627 10.2147/CMAR.S328851 34815715
    [Google Scholar]
  194. Cortesi M. Liverani C. Mercatali L. Ibrahim T. Giordano E. Development and validation of an in-silico tool for the study of therapeutic agents in 3D cell cultures. Comput. Biol. Med. 2021 130 104211 10.1016/j.compbiomed.2021.104211 33476993
    [Google Scholar]
  195. Labrie M. Brugge J.S. Mills G.B. Zervantonakis I.K. Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 2022 22 6 323 339 10.1038/s41568‑022‑00454‑5 35264777
    [Google Scholar]
  196. Hakami M.A. Harnessing machine learning potential for personalised drug design and overcoming drug resistance. J. Drug Target. 2024 32 8 918 930 10.1080/1061186X.2024.2365934 38842417
    [Google Scholar]
  197. Rafique R. Islam S.M.R. Kazi J.U. Machine learning in the prediction of cancer therapy. Comput. Struct. Biotechnol. J. 2021 19 4003 4017 10.1016/j.csbj.2021.07.003 34377366
    [Google Scholar]
  198. Hassan M. Awan F.M. Naz A. deAndrés-Galiana E.J. Alvarez O. Cernea A. Fernández-Brillet L. Fernández-Martínez J.L. Kloczkowski A. Innovations in genomics and big data analytics for personalized medicine and health care: A review. Int. J. Mol. Sci. 2022 23 9 4645 10.3390/ijms23094645 35563034
    [Google Scholar]
  199. Sharma M. Bakshi A.K. Mittapelly N. Gautam S. Marwaha D. Rai N. Singh N. Tiwari P. Agarwal N. Kumar A. Mishra P.R. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. J. Control. Release 2022 346 43 70 10.1016/j.jconrel.2022.04.007 35405165
    [Google Scholar]
  200. Franchetti Y. Nolin T.D. Dose optimization in kidney disease: Opportunities for PBPK modeling and simulation. J. Clin. Pharmacol. 2020 60 S1 S36 S51 10.1002/jcph.1741 33205428
    [Google Scholar]
  201. Kreutz A. Chang X. Hogberg H.T. Wetmore B.A. Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies. Hum. Genomics 2024 18 1 129 10.1186/s40246‑024‑00691‑9 39574200
    [Google Scholar]
  202. Guimarães M. Murshed M. Pineiro-Llanes J. Cristofoletti R. Fotaki N. Applying PBPK modeling to predict drug exposure in special populations. The Art and Science of Physiologically-Based Pharmacokinetics Modeling. Boca Raton, Florida CRC Press 2020 162 179 10.1201/9781003031802‑9
    [Google Scholar]
  203. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Tech 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  204. Marques L. Costa B. Pereira M. Silva A. Santos J. Saldanha L. Silva I. Magalhães P. Schmidt S. Vale N. Advancing precision medicine: A review of innovative In silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics 2024 16 3 332 10.3390/pharmaceutics16030332 38543226
    [Google Scholar]
  205. Ramadan Q. Fardous R.S. Hazaymeh R. Alshmmari S. Zourob M. Pharmacokinetics‐on‐a‐chip: in vitro microphysiological models for emulating of drugs ADME. Adv. Biol. 2021 5 9 2100775 10.1002/adbi.202100775 34323392
    [Google Scholar]
  206. Sood R. Anita A. Pharmacokinetic and pharmacodynamic modeling (PK/PD) in pharmaceutical research: Current research and advances. Softw. Program. Tools Pharm. Res 2024 153 169
    [Google Scholar]
  207. Mottini C. Napolitano F. Li Z. Gao X. Cardone L. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. In: Seminars in cancer biology. Amsterdam, Netherlands Elsevier 2021 59 74 10.1016/j.semcancer.2019.09.023
    [Google Scholar]
  208. Ma C. Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst. Biol. Appl. 2024 10 1 71 10.1038/s41540‑024‑00397‑7 38969664
    [Google Scholar]
  209. Zhang L. Xie H. Wang Y. Wang H. Hu J. Zhang G. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models. Front. Vet. Sci. 2022 9 860472 10.3389/fvets.2022.860472 35400105
    [Google Scholar]
  210. Yow H.Y. Govindaraju K. Lim A.H. Abdul Rahim N. Optimizing antimicrobial therapy by integrating multi-omics with pharmacokinetic/pharmacodynamic models and precision dosing. Front. Pharmacol. 2022 13 915355 10.3389/fphar.2022.915355 35814236
    [Google Scholar]
  211. Lorenzo G. Ahmed S.R. Hormuth D.A. Vaughn B. Kalpathy-Cramer J. Solorio L. Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data. Annu. Rev. Biomed. Eng. 2023 26 1 6 38594947
    [Google Scholar]
  212. DeRidder L. Rubinson D.A. Langer R. Traverso G. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J. Control. Release 2022 352 840 860 10.1016/j.jconrel.2022.10.043 36334860
    [Google Scholar]
  213. Agur Z. Elishmereni M. Foryś U. Kogan Y. Accelerating the development of personalized cancer immunotherapy by integrating molecular patients’ profiles with dynamic mathematical models. Clin. Pharmacol. Ther. 2020 108 3 515 527 10.1002/cpt.1942 32535891
    [Google Scholar]
  214. Tiwari P.C. Pal R. Chaudhary M.J. Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev. Res. 2023 84 8 1652 1663 10.1002/ddr.22115 37712494
    [Google Scholar]
  215. Gao W. Liu J. Shtylla B. Venkatakrishnan K. Yin D. Shah M. Nicholas T. Cao Y. Realizing the promise of Project Optimus: Challenges and emerging opportunities for dose optimization in oncology drug development. CPT Pharmacometrics Syst. Pharmacol. 2024 13 5 691 709 10.1002/psp4.13079 37969061
    [Google Scholar]
  216. Ricker C.A. Meli K. Van Allen E.M. Historical perspective and future directions: Computational science in immuno-oncology. J. Immunother. Cancer 2024 12 1 008306 10.1136/jitc‑2023‑008306 38191244
    [Google Scholar]
  217. Ai L. Xu A. Xu J. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Adv. Exp. Med. Biol. 2020 1248 33 59 10.1007/978‑981‑15‑3266‑5_3
    [Google Scholar]
  218. Parvez A. Choudhary F. Mudgal P. Khan R. Qureshi K.A. Farooqi H. Aspatwar A. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. 2023 14 1296341 10.3389/fimmu.2023.1296341 38106415
    [Google Scholar]
  219. Mei A. Letscher K.P. Reddy S. Engineering next-generation chimeric antigen receptor-T cells: Recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants. Curr. Opin. Biotechnol. 2024 90 103223 10.1016/j.copbio.2024.103223 39504625
    [Google Scholar]
  220. Chaudhury A. Zhu X. Chu L. Goliaei A. June C.H. Kearns J.D. Stein A.M. Chimeric antigen receptor T cell therapies: A review of cellular kinetic‐pharmacodynamic modeling approaches. J. Clin. Pharmacol. 2020 60 S1 S147 S159 10.1002/jcph.1691 33205434
    [Google Scholar]
  221. Becker A.S. Oehmcke-Hecht S. Dargel E. Kaps P. Freitag T. Kreikemeyer B. Preclinical in vitro models of HNSCC and their role in drug discovery-an emphasis on the cancer microenvironment and microbiota. Expert Opin. Drug Discov. 2024 1 21 39676285
    [Google Scholar]
  222. Massa C. Seliger B. Combination of multiple omics techniques for a personalized therapy or treatment selection. Front. Immunol. 2023 14 1258013 10.3389/fimmu.2023.1258013 37828984
    [Google Scholar]
  223. Wensink G.E. Elias S.G. Mullenders J. Koopman M. Boj S.F. Kranenburg O.W. Roodhart J.M.L. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 2021 5 1 30 10.1038/s41698‑021‑00168‑1 33846504
    [Google Scholar]
  224. Davis K.D. Aghaeepour N. Ahn A.H. Angst M.S. Borsook D. Brenton A. Burczynski M.E. Crean C. Edwards R. Gaudilliere B. Hergenroeder G.W. Iadarola M.J. Iyengar S. Jiang Y. Kong J.T. Mackey S. Saab C.Y. Sang C.N. Scholz J. Segerdahl M. Tracey I. Veasley C. Wang J. Wager T.D. Wasan A.D. Pelleymounter M.A. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol. 2020 16 7 381 400 10.1038/s41582‑020‑0362‑2 32541893
    [Google Scholar]
  225. Tufail M. Hu J.J. Liang J. He C.Y. Wan W.D. Huang Y.Q. Jiang C.H. Wu H. Li N. Predictive, preventive, and personalized medicine in breast cancer: Targeting the PI3K pathway. J. Transl. Med. 2024 22 1 15 10.1186/s12967‑023‑04841‑w 38172946
    [Google Scholar]
  226. Chunarkar-Patil P. Kaleem M. Mishra R. Ray S. Ahmad A. Verma D. Bhayye S. Dubey R. Singh H. Kumar S. Anticancer drug discovery based on natural products: From computational approaches to clinical studies. Biomedicines 2024 12 1 201 10.3390/biomedicines12010201 38255306
    [Google Scholar]
  227. Rajpoot K. Desai N. Koppisetti H. Tekade M. Sharma M.C. Behera S.K. In silico methods for the prediction of drug toxicity. Pharmacokinetics and toxicokinetic considerations. Amsterdam, Netherlands Elsevier 2022 357 383 10.1016/B978‑0‑323‑98367‑9.00012‑3
    [Google Scholar]
  228. Zhao Y. Yin N. Yang R. Faiola F. Recent advances in environmental toxicology: Exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models. Food Chem. Toxicol. 2024 193 115022 10.1016/j.fct.2024.115022 39326696
    [Google Scholar]
  229. Soltani S. Hallaj-Nezhadi S. Rashidi M.R. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives. Eur. J. Med. Chem. 2021 222 113559 10.1016/j.ejmech.2021.113559 34119831
    [Google Scholar]
  230. Yang S. Kar, Supratik Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artif. Intell. Chem. 2023 1 2 100011 10.1016/j.aichem.2023.100011
    [Google Scholar]
  231. Perry C. Davis G. Conner T.M. Zhang T. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: An overview. Curr. Pharmacol. Rep. 2020 6 3 71 84 10.1007/s40495‑020‑00212‑x 32399388
    [Google Scholar]
  232. Isaksson L.J. Pepa M. Zaffaroni M. Marvaso G. Alterio D. Volpe S. Corrao G. Augugliaro M. Starzyńska A. Leonardi M.C. Orecchia R. Jereczek-Fossa B.A. Machine learning-based models for prediction of toxicity outcomes in radiotherapy. Front. Oncol. 2020 10 790 10.3389/fonc.2020.00790 32582539
    [Google Scholar]
  233. Cavasotto C.N. Scardino V. Machine learning toxicity prediction: Latest advances by toxicity end point. ACS Omega 2022 7 51 47536 47546 10.1021/acsomega.2c05693 36591139
    [Google Scholar]
  234. Singh A.V. Ansari M.H.D. Rosenkranz D. Maharjan R.S. Kriegel F.L. Gandhi K. Kanase A. Singh R. Laux P. Luch A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater. 2020 9 17 1901862 10.1002/adhm.201901862 32627972
    [Google Scholar]
  235. Duarte D Vale N Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr.Res. Pharmacol. Drug Discov 2022 3 100110 10.1016/j.crphar.2022.100110
    [Google Scholar]
  236. She S. Chen H. Ji W. Sun M. Cheng J. Rui M. Feng C. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies. Front. Pharmacol. 2022 13 1032875 10.3389/fphar.2022.1032875 36588694
    [Google Scholar]
  237. Weth F.R. Hoggarth G.B. Weth A.F. Paterson E. White M.P.J. Tan S.T. Peng L. Gray C. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer 2024 130 5 703 715 10.1038/s41416‑023‑02502‑9 38012383
    [Google Scholar]
  238. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑6 34950512
    [Google Scholar]
  239. Ward R.A. Fawell S. Floc’h N. Flemington V. McKerrecher D. Smith P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev. 2021 121 6 3297 3351 10.1021/acs.chemrev.0c00383 32692162
    [Google Scholar]
  240. Das A.J. Mohideen H.S. Systems pharmacology–principles, methods and applications. In: Systems Biology and In-Depth Applications for Unlocking Diseases. Amsterdam, Netherlands Elsevier 2025 193 206 10.1016/B978‑0‑443‑22326‑6.00015‑8
    [Google Scholar]
  241. Aghamiri S.S. Amin R. Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J. Pharmacokinet. Pharmacodyn. 2022 49 1 19 37 10.1007/s10928‑021‑09790‑9 34671863
    [Google Scholar]
  242. Azer K. Kaddi C.D. Barrett J.S. Bai J.P.F. McQuade S.T. Merrill N.J. Piccoli B. Neves-Zaph S. Marchetti L. Lombardo R. Parolo S. Immanuel S.R.C. Baliga N.S. History and future perspectives on the discipline of quantitative systems pharmacology modeling and its applications. Front. Physiol. 2021 12 637999 10.3389/fphys.2021.637999 33841175
    [Google Scholar]
  243. Cotner M. Meng S. Jost T. Gardner A. De Santiago C. Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am. J. Physiol. Cell Physiol. 2023 324 2 C247 C262 10.1152/ajpcell.00185.2022 36503241
    [Google Scholar]
  244. Naser R. Fakhoury I. El-Fouani A. Abi-Habib R. El-Sibai M. Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). Int. J. Oncol. 2022 62 2 23 10.3892/ijo.2022.5471 36579669
    [Google Scholar]
  245. Valentinuzzi D. Jeraj R. Computational modelling of modern cancer immunotherapy. Phys. Med. Biol. 2020 65 24 24TR01 10.1088/1361‑6560/abc3fc 33091898
    [Google Scholar]
  246. Jin R. Zhao J. Xia L. Li Q. Li W. Peng L. Xia Y. Application of immune checkpoint inhibitors in EGFR-mutant non-small-cell lung cancer: From bed to bench. Ther. Adv. Med. Oncol. 2020 12 1758835920930333 10.1177/1758835920930333 32565926
    [Google Scholar]
  247. Pérez Santín E. Rodríguez Solana R. González García M. García Suárez M.D.M. Blanco Díaz G.D. Cima Cabal M.D. Moreno Rojas J.M. López Sánchez J.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021 11 5 1516 10.1002/wcms.1516
    [Google Scholar]
  248. Sun D. Gao W. Hu H. Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022 12 7 3049 3062 10.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  249. Kong J. Lee H. Kim D. Han S.K. Ha D. Shin K. Kim S. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat. Commun. 2020 11 1 5485 10.1038/s41467‑020‑19313‑8 33127883
    [Google Scholar]
  250. Malla R. Viswanathan S. Makena S. Kapoor S. Verma D. Raju A.A. Dunna M. Muniraj N. Revitalizing cancer treatment: Exploring the role of drug repurposing. Cancers 2024 16 8 1463 10.3390/cancers16081463 38672545
    [Google Scholar]
  251. Mishra A.S. Vasanthan M. Malliappan S.P. Drug repurposing: A leading strategy for new threats and targets. ACS Pharmacol. Transl. Sci. 2024 7 4 915 932 10.1021/acsptsci.3c00361 38633585
    [Google Scholar]
  252. Fountzilas E. Tsimberidou A.M. Vo H.H. Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med. 2022 14 1 101 10.1186/s13073‑022‑01102‑1
    [Google Scholar]
  253. Dupont C.A. Riegel K. Pompaiah M. Juhl H. Rajalingam K. Druggable genome and precision medicine in cancer: Current challenges. FEBS J. 2021 288 21 6142 6158 10.1111/febs.15788 33626231
    [Google Scholar]
  254. Lakshmanan V.K. Ojha S. Jung Y.D. A modern era of personalized medicine in the diagnosis, prognosis, and treatment of prostate cancer. Comput. Biol. Med. 2020 126 104020 10.1016/j.compbiomed.2020.104020 33039808
    [Google Scholar]
  255. Bhat G.R. Sethi I. Rah B. Kumar R. Afroze D. Innovative in silico approaches for characterization of genes and proteins. Front. Genet. 2022 13 865182 10.3389/fgene.2022.865182 35664302
    [Google Scholar]
  256. Grady W.M. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv. Cancer Res. 2021 151 425 468 10.1016/bs.acr.2021.02.006 34148620
    [Google Scholar]
  257. Paliwal A. Jain S. Kumar S. Wal P. Khandai M. Khandige P.S. Sadananda V. Anwer M.K. Gulati M. Behl T. Srivastava S. Predictive modelling in pharmacokinetics: From in-silico simulations to personalized medicine. Expert Opin. Drug Metab. Toxicol. 2024 20 4 181 195 10.1080/17425255.2024.2330666 38480460
    [Google Scholar]
  258. Waury K. Willemse E.A.J. Vanmechelen E. Zetterberg H. Teunissen C.E. Abeln S. Bioinformatics tools and data resources for assay development of fluid protein biomarkers. Biomark. Res. 2022 10 1 83 10.1186/s40364‑022‑00425‑w 36380380
    [Google Scholar]
  259. Najjar R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics 2023 13 17 2760 10.3390/diagnostics13172760 37685300
    [Google Scholar]
  260. Stenzinger A. Alber M. Allgäuer M. Jurmeister P. Bockmayr M. Budczies J. Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling. In: Seminars in cancer biology. Amsterdam, Netherlands Elsevier 2022 129 143 10.1016/j.semcancer.2021.02.011
    [Google Scholar]
  261. Ahmed F. Samantasinghar A. Soomro A.M. Kim S. Choi K.H. A systematic review of computational approaches to understand cancer biology for informed drug repurposing. J. Biomed. Inform. 2023 142 104373 10.1016/j.jbi.2023.104373 37120047
    [Google Scholar]
  262. Biswal S. Mallick B. Unlocking the potential of signature-based drug repurposing for anticancer drug discovery. Arch. Biochem. Biophys. 2024 761 110150 10.1016/j.abb.2024.110150 39265695
    [Google Scholar]
  263. Gangwal A. Ansari A. Ahmad I. Azad A.K. Wan Sulaiman W.M.A. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Comput. Biol. Med. 2024 179 108734 10.1016/j.compbiomed.2024.108734 38964243
    [Google Scholar]
  264. Pasrija P. Jha P. Upadhyaya P. Khan M.S. Chopra M. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery. Curr. Top. Med. Chem. 2022 22 20 1692 1727 10.2174/1568026622666220701091339 35786336
    [Google Scholar]
  265. Govindarasu M. Ganeshan S. Ansari M.A. Alomary M.N. AlYahya S. Alghamdi S. Almehmadi M. Rajakumar G. Thiruvengadam M. Vaiyapuri M. In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. J. Saudi Chem. Soc. 2021 25 9 101319 10.1016/j.jscs.2021.101319
    [Google Scholar]
  266. El-Sewedy T. Salama A.F. Mohamed A.E. Elbaioumy N.M. El-Far A.H. Albalawi A.N. Elmetwalli A. Hepatocellular Carcinoma cells: Activity of Amygdalin and Sorafenib in Targeting AMPK/mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death. BMC Complement Med. Ther. 2023 23 1 329 10.1186/s12906‑023‑04142‑1 37726740
    [Google Scholar]
  267. Hua Y. Dai X. Xu Y. Xing G. Liu H. Lu T. Chen Y. Zhang Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur. J. Med. Chem. 2022 234 114239 10.1016/j.ejmech.2022.114239 35290843
    [Google Scholar]
  268. Adedokun K.A. Imodoye S.O. Bello I.O. Lanihun A.A. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery. In: Phytochemistry, Computational Tools and Databases in Drug Discovery. Amsterdam, Netherlands Elsevier 2023 393 455 10.1016/B978‑0‑323‑90593‑0.00017‑4
    [Google Scholar]
  269. Ajiboye B.O. Fatoki T.H. Akinola O.G. Ajeigbe K.O. Bamisaye A.F. Domínguez-Martín E.M. Rijo P. Oyinloye B.E. In silico exploration of anti-prostate cancer compounds from differential expressed genes. BMC Urol. 2024 24 1 138 10.1186/s12894‑024‑01521‑9 38956591
    [Google Scholar]
  270. S, A.K.; Patel, S.S. Possible drug repurposing and accelerated wound healing. Regen. Eng. Transl. Med. 2025 11 76 87 10.1007/s40883‑024‑00347‑z
    [Google Scholar]
  271. Shafiq N. Jannat A. Munir H. Rashid M. Parveen S. Exploring the potential of FDA approved anti-diabetic drugs for repurposing against COVID-19: A core combination of multiple computational strategies and integrated artificial intelligence. J. Biomol. Struct. Dyn. 2024 42 13 6556 6576 10.1080/07391102.2023.2234993 37455488
    [Google Scholar]
  272. Amjad E. Sokouti B. Repurposing, effects, design, and discovery of drugs in systems biology. Systems Biology and In-Depth Applications for Unlocking Diseases. Amsterdam, Netherlands Elsevier 2025 305 318 10.1016/B978‑0‑443‑22326‑6.00024‑9
    [Google Scholar]
  273. Li H. Jiang W. Liu S. Yang M. Chen S. Pan Y. Cui M. Connecting the mechanisms of tumor sex differences with cancer therapy. Mol. Cell. Biochem. 2024 479 2 213 231 10.1007/s11010‑023‑04723‑1 37027097
    [Google Scholar]
  274. Xian S. Dosset M. Castro A. Carter H. Zanetti M. Transcriptional analysis links B cells and TERT expression to favorable prognosis in head and neck cancer. PNAS Nexus 2023 2 3 pgad046 10.1093/pnasnexus/pgad046 36909826
    [Google Scholar]
  275. Li S. Peng Y. Chen M. Zhao Y. Xiong Y. Li J. Luo P. Wang H. Zhao F. Zhao Q. Cui Y. Chen S. Zhou J.G. Wang S. Facilitating integrative and personalized oncology omics analysis with UCSCXenaShiny. Commun. Biol. 2024 7 1 1200 10.1038/s42003‑024‑06891‑2 39341906
    [Google Scholar]
  276. Telenti A. Lippert C. Chang P.C. DePristo M. Deep learning of genomic variation and regulatory network data. Hum. Mol. Genet. 2018 27 R1 R63 R71 10.1093/hmg/ddy115 29648622
    [Google Scholar]
  277. Kalinin A.A. Higgins G.A. Reamaroon N. Soroushmehr S. Allyn-Feuer A. Dinov I.D. Najarian K. Athey B.D. Deep learning in pharmacogenomics: From gene regulation to patient stratification. Pharmacogenomics 2018 19 7 629 650 10.2217/pgs‑2018‑0008 29697304
    [Google Scholar]
  278. Pennell N.A. Mutebi A. Zhou Z.Y. Economic impact of next generation sequencing vs sequential single-gene testing modalities to detect genomic alterations in metastatic non-small cell lung cancer using a decision analytic model. J. Clin. Oncol. 2021 36 15 Suppl. 1 6 10.1200/JCO.2018.36.15
    [Google Scholar]
  279. Cava C. Bertoli G. Colaprico A. Olsen C. Bontempi G. Castiglioni I. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis. BMC Genomics 2018 19 1 25 10.1186/s12864‑017‑4423‑x 29304754
    [Google Scholar]
  280. Curtis C. Shah S.P. Chin S.F. Turashvili G. Rueda O.M. Dunning M.J. Speed D. Lynch A.G. Samarajiwa S. Yuan Y. Gräf S. Ha G. Haffari G. Bashashati A. Russell R. McKinney S. Langerød A. Green A. Provenzano E. Wishart G. Pinder S. Watson P. Markowetz F. Murphy L. Ellis I. Purushotham A. Børresen-Dale A.L. Brenton J.D. Tavaré S. Caldas C. Aparicio S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012 486 7403 346 352 10.1038/nature10983 22522925
    [Google Scholar]
  281. Steuer C.E. Ramalingam S.S. Tumor mutation burden: Leading immunotherapy to the era of precision medicine? J. Clin. Oncol. 2018 36 7 631 632 10.1200/JCO.2017.76.8770 29337637
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073397811250716154921
Loading
/content/journals/cchts/10.2174/0113862073397811250716154921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test