Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Purpose

The incidence of Functional Dyspepsia (FD) is gradually increasing, yet there are currently no effective treatment methods available. This study explored the effective components, potential targets, and pathways of Shi-San-Wei-He-Zhong-Wan (SSWHZW) in the treatment of FD, aiming to provide new insights into its treatment.

Methods

First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and GeneCards databases were utilized to identify the major active components of SSWHZW and potential therapeutic targets of FD. Subsequently, functional enrichment analyses were performed to elucidate the mechanisms of SSWHZW on FD. Molecular docking simulations were then conducted to assess the binding affinity of key targets and major active components. Next, an FD animal model was established, and the therapeutic effects of SSWHZW were validated using Hematoxylin and Eosin (HE) staining and Enzyme-linked Immunosorbent Assay (ELISA). Finally, Western blot analysis was performed to validate the involvement of key signaling pathways.

Results

A total of 229 active ingredients and 283 putative targets were identified from SSWHZW, of which 173 overlapped with the targets of FD and were considered potential therapeutic targets. Key ingredients, such as quercetin, kaempferol, wogonin, and baicalein, were identified as pivotal components of SSWHZW, potentially acting on the 173 overlapping targets and influencing FD through related signaling pathways. Functional enrichment analysis revealed that the PI3K-Akt signaling pathway, VEGF signaling pathway, and NF-kappa B signaling pathway may be involved in the mechanism of SSWHZW in treating FD. Molecular docking predicted that all five ingredients could firmly bind with the top-ranked target TP53 in the Protein-protein Interaction (PPI) network. Further experiments demonstrated that SSWHZW protected the intestinal tissues of FD rats from inflammatory damage by inhibiting the PI3K/AKT signaling pathway.

Conclusion

Based on network pharmacology, this study explored the multi-component, multi-target, and multi-pathway characteristics of SSWHZW in treating FD. The findings suggest that SSWHZW exerts its anti-FD effects by inhibiting the expression of the PI3K/AKT signaling pathway, providing new insights and methods for further research on the mechanism of SSWHZW in treating FD.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073358956241203101815
2025-01-23
2025-12-18
Loading full text...

Full text loading...

References

  1. WalkerM.M. PotterM.D. TalleyN.J. Tangible pathologies in functional dyspepsia.Best Pract. Res. Clin. Gastroenterol.201940-4110165010.1016/j.bpg.2019.101650 31594648
    [Google Scholar]
  2. PomentiS. DevinskyJ. JodorkovskyD. Diet for functional gastrointestinal disorders/disorders of gut–brain interaction.Med. Clin. North Am.2022106589991210.1016/j.mcna.2022.03.005 36154707
    [Google Scholar]
  3. SetiaG. BhavananiA.B. RamanathanM. Yoga therapy in functional dyspepsia.Narrat. Rev. J. Gast. Liver Dis.202332451352510.15403/jgld‑4867
    [Google Scholar]
  4. ZalaA.V. WalkerM.M. TalleyN.J. Emerging drugs for functional dyspepsia.Expert Opin. Emerg. Drugs201520222123310.1517/14728214.2015.1009827 25645940
    [Google Scholar]
  5. MiwaH. NagaharaA. AsakawaA. AraiM. OshimaT. KasugaiK. KamadaK. SuzukiH. TanakaF. TominagaK. FutagamiS. HojoM. MiharaH. HiguchiK. KusanoM. ArisawaT. KatoM. JohT. MochidaS. EnomotoN. ShimosegawaT. KoikeK. Evidence-based clinical practice guidelines for functional dyspepsia 2021.J. Gastroenterol.2022572476110.1007/s00535‑021‑01843‑7 35061057
    [Google Scholar]
  6. OustamanolakisP. TackJ. Dyspepsia.J. Clin. Gastroenterol.201246317519010.1097/MCG.0b013e318241b335 22327302
    [Google Scholar]
  7. ChenY. WangC. WangJ. ZhengL. LiuW. LiH. YuS. PanB. YuH. YuR. Association of psychological characteristics and functional dyspepsia treatment outcome: A case-control study.Gastroenterol. Res. Pract.201620161510.1155/2016/5984273 27547220
    [Google Scholar]
  8. WeiZ. XingX. TantaiX. The effects of psychological interventions on symptoms and psychology of functional dyspepsia: A systematic review and meta-analysis.Front. Psychol.20221382722010.3389/fpsyg.2022.827220
    [Google Scholar]
  9. KoloskiN. HoltmannG. TalleyN.J. Is there a causal link between psychological disorders and functional gastrointestinal disorders?Expert Rev. Gastroenterol. Hepatol.202014111047105910.1080/17474124.2020.1801414 32715790
    [Google Scholar]
  10. DibaiseJ.K. IslamR.S. DueckA.C. RoarkeM.C. CrowellM.D. Psychological distress in Rome III functional dyspepsia patients presenting for testing of gastric emptying.Neurogastroenterol. Motil.201628219620510.1111/nmo.12709 26511077
    [Google Scholar]
  11. FaramarziM. KheirkhahF. ShirvaniS.J. MosaviS. ZariniS. Psychological factors in patients with peptic ulcerand functional dyspepsia.Caspian J. Intern. Med.2014527176 24778780
    [Google Scholar]
  12. OshimaT. Functional dyspepsia: Current understanding and future perspective.Digestion20241051263310.1159/000532082 37598673
    [Google Scholar]
  13. SetiaG. BhavananiA.B. RamanathanM. Yoga therapy in functional dyspepsia. A narrative review. J Gast.Liver Dis202332451352510.15403/jgld‑4867
    [Google Scholar]
  14. SolovyovaG. AlianovaT. KurykO. TaranA. Morphological peculiarities of chronic gastritis in patients with functional dyspepsia.Georgian Med. News2019289102107 31215888
    [Google Scholar]
  15. JungH. TalleyN.J. Role of the duodenum in the pathogenesis of functional dyspepsia: A paradigm shift.J. Neurogastroenterol. Motil.201824334535410.5056/jnm18060 29791992
    [Google Scholar]
  16. TalleyN.J. What causes functional gastrointestinal disorders? A proposed disease model.Am. J. Gastroenterol.20201151414810.14309/ajg.0000000000000485 31895721
    [Google Scholar]
  17. BrownG. HoedtE.C. KeelyS. ShahA. WalkerM.M. HoltmannG. TalleyN.J. Role of the duodenal microbiota in functional dyspepsia.Neurogastroenterol. Motil.20223411e1437210.1111/nmo.14372 35403776
    [Google Scholar]
  18. TziatziosG. GkolfakisP. PapanikolaouI.S. Gut microbiota dysbiosis in functional dyspepsia.Microorganisms20208569110.3390/microorganisms8050691
    [Google Scholar]
  19. XvY. ChenJ. LinJ. Gut microbiota and functional dyspepsia: A two-sample Mendelian randomization study.Front. Microbiol.202415137739210.3389/fmicb.2024.1377392
    [Google Scholar]
  20. WautersL. TalleyN.J. WalkerM.M. TackJ. VanuytselT. Novel concepts in the pathophysiology and treatment of functional dyspepsia.Gut202069359160010.1136/gutjnl‑2019‑318536 31784469
    [Google Scholar]
  21. WautersL. LiH. TalleyN.J. Editorial: Disruption of the microbiota-gut-brain axis in functional dyspepsia and gastroparesis: Mechanisms and clinical implications.Front. Neurosci.20221694181010.3389/fnins.2022.941810
    [Google Scholar]
  22. ScarpelliniE. Van den HouteK. ScholJ. HuangI.H. ColomierE. CarboneF. TackJ. Nutrient drinking test as biomarker in functional dyspepsia.Am. J. Gastroenterol.202111671387139510.14309/ajg.0000000000001242 33941747
    [Google Scholar]
  23. YinT. SunR. HeZ. ChenY. YinS. LiuX. LuJ. MaP. ZhangT. HuangL. QuY. SuoX. LeiD. GongQ. LiangF. LiS. ZengF. Subcortical–cortical functional connectivity as a potential biomarker for identifying patients with functional dyspepsia.Cereb. Cortex202232153347335810.1093/cercor/bhab419 34891153
    [Google Scholar]
  24. TanakaF. TakashimaS. NadataniY. OtaniK. HosomiS. KamataN. TairaK. NagamiY. TanigawaT. FukumotoS. WatanabeT. MurakamiY. KawadaN. FujiwaraY. Exosomal hsa-miR-933 in gastric juice as a potential biomarker for functional dyspepsia.Dig. Dis. Sci.202065123493350110.1007/s10620‑020‑06096‑7 31974910
    [Google Scholar]
  25. YinT. HeZ. ChenY. SunR. YinS. LuJ. YangY. LiuX. MaP. QuY. ZhangT. SuoX. LeiD. GongQ. TangY. LiangF. ZengF. Predicting acupuncture efficacy for functional dyspepsia based on functional brain network features: A machine learning study.Cereb. Cortex20233373511352210.1093/cercor/bhac288 35965072
    [Google Scholar]
  26. ItoK KanemitsuY UedaT KamiyaT KubotaE MoriY FukumitsuK TajiriT FukudaS UemuraT OhkuboH ItoY ShibataY KumamotoN UgawaS NiimiA Comorbid functional dyspepsia reflects IL-33–mediated airway neuronal dysfunction in asthma.J Allergy Clin Immunol2024S0091-6749(24)00632810.1016/j.jaci.2024.06.00838909633
    [Google Scholar]
  27. WenY.D. LuF. ZhaoY.P. WangP. YangQ. LiJ.X. LiH.Z. ChiL.L. ZhouZ.H. TangY.P. XuJ.K. ZhaoY. TangX.D. Epigastric pain syndrome: What can traditional Chinese medicine do? A randomized controlled trial of biling weitong granules.World J. Gastroenterol.202026284170418110.3748/wjg.v26.i28.4170 32821078
    [Google Scholar]
  28. VijayvargiyaP. CamilleriM. ChedidV. MandawatA. ErwinP.J. MuradM.H. Effects of promotility agents on gastric emptying and symptoms: A systematic review and meta-analysis.Gastroenterology201915661650166010.1053/j.gastro.2019.01.249 30711628
    [Google Scholar]
  29. RenQ. LongF.W. XiangJ.Y. Observation of the efficacy of acid-suppressing drugs in the treatment of functional dyspepsia.Zhongguo Yiyuan Yaoxue Zazhi200626785485510.3321/j.issn:1001‑5213.2006.07.033
    [Google Scholar]
  30. XuQ. YangM.Q. BaoX.M. Simultaneous determination of 9 components in Shisanwei Hezhong Wan by HPLC.Zhongchengyao202042229730010.3969/j.issn.1001‑1528.2020.02.005
    [Google Scholar]
  31. WuJ. ZhangS. LiuL.M. Observation of the efficacy of Shisanwei Hezhong Wan combined with acupuncture in the treatment of liver and stomach disharmony-type functional dyspepsia.Anhui Zhongyiyao Daxue Xuebao.2017363535610.3969/j.issn.2095‑7246.2017.03.016
    [Google Scholar]
  32. LiXJ JiangYL ZhangYP Clinical efficacy of Shisanwei Hezhong Wan in the treatment of liver and stomach disharmony-type functional dyspepsia and its impact on patients' quality of life.Zhongguo Zhongxiyi Jiehe Xiaohua Zazhi20152311764772
    [Google Scholar]
  33. ShangL WangY LiJ Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J Ethnopharmacol2023302Pt A11587610.1016/j.jep.2022.115876
    [Google Scholar]
  34. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  35. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518 38197310
    [Google Scholar]
  36. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  37. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123
    [Google Scholar]
  38. ZhangJ. LiangR. WangL. YangB. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology.J. Ethnopharmacol.201922910411410.1016/j.jep.2018.10.004 30312741
    [Google Scholar]
  39. LiuT. ZhuangX.X. TangY.Y. GaoY.C. GaoJ.R. Mechanistic insights into Qiteng Xiaozhuo Granules’ regulation of autophagy for chronic glomerulonephritis treatment: Serum pharmacochemistry, network pharmacology, and experimental validation.J. Ethnopharmacol.202432411781910.1016/j.jep.2024.117819 38286158
    [Google Scholar]
  40. LiuT. GaoY.C. QinX.J. GaoJ.R. Exploring the mechanism of Jianpi Qushi Huayu Formula in the treatment of chronic glomerulonephritis based on network pharmacology.Naunyn Schmiedebergs Arch. Pharmacol.2021394122451247010.1007/s00210‑021‑02159‑2 34618179
    [Google Scholar]
  41. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  42. StelzerG RosenN PlaschkesI ZimmermanS TwikM FishilevichS SteinTI NudelR LiederI MazorY KaplanS DaharyD WarshawskyD GolanG.Y KohnA RappaportN SafranM LancetD. The GeneCards Suite: From gene data mining to disease genome sequence analysesCurr Protoc Bioinformatics2016541.30.11.30.3310.1002/cpbi.5
    [Google Scholar]
  43. SzklarczykD. FranceschiniA. KuhnM. SimonovicM. RothA. MinguezP. DoerksT. StarkM. MullerJ. BorkP. JensenL.J. MeringC. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scoredNucleic Acids Res201139DatabaseD561D56810.1093/nar/gkq97321045058
    [Google Scholar]
  44. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  45. KaurT. MadgulkarA. BhalekarM. AsgaonkarK. Molecular docking in formulation and development.Curr. Drug Discov. Technol.2019161303910.2174/1570163815666180219112421 29468973
    [Google Scholar]
  46. DongD. XuZ. ZhongW. PengS. Parallelization of molecular docking: A review.Curr. Top. Med. Chem.201818121015102810.2174/1568026618666180821145215 30129415
    [Google Scholar]
  47. CramponK. GiorkallosA. DeldossiM. BaudS. SteffenelL.A. Machine-learning methods for ligand–protein molecular docking.Drug Discov. Today202227115116410.1016/j.drudis.2021.09.007 34560276
    [Google Scholar]
  48. FerreiraL.G. SantosD.R.N. OlivaG. AndricopuloA.D. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384
    [Google Scholar]
  49. ZhangJ. WangX. WangF. TangX. Xiangsha Liujunzi Decoction improves gastrointestinal motility in functional dyspepsia with spleen deficiency syndrome by restoring mitochondrial quality control homeostasis.Phytomedicine202210515437410.1016/j.phymed.2022.154374 35963194
    [Google Scholar]
  50. XiaJ. HuJ.N. WangZ. CaiE.B. RenS. WangY.P. LeiX.J. LiW. Based on network pharmacology and molecular docking to explore the protective effect of Epimedii Folium extract on cisplatin-induced intestinal injury in mice.Front. Pharmacol.202213104050410.3389/fphar.2022.1040504 36313368
    [Google Scholar]
  51. SayukG.S. GyawaliC.P. Functional dyspepsia: Diagnostic and therapeutic approaches.Drugs202080131319133610.1007/s40265‑020‑01362‑4 32691294
    [Google Scholar]
  52. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  53. KadiogluO. NassJ. SaeedM.E. SchulerB. EfferthT. Kaempferol is an anti-inflammatory compound with activity towards NF-κB pathway proteins.Anticancer Res.201535526452650 25964540
    [Google Scholar]
  54. ShaoW. ZhangC. LiK. LuZ. ZhaoZ. GaoK. LvC. Wogonin inhibits inflammation and apoptosis through STAT3 signal pathway to promote the recovery of spinal cord injury.Brain Res.2022178214784310.1016/j.brainres.2022.147843 35202619
    [Google Scholar]
  55. WenY. WangY. ZhaoC. ZhaoB. WangJ. The pharmacological efficacy of baicalin in inflammatory diseases.Int. J. Mol. Sci.20232411931710.3390/ijms24119317
    [Google Scholar]
  56. SunY. GaoL. HouW. WuJ. β -sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF- κ B pathways in LPS-exposed BV2 cells.BioMed Res. Int.2020202011010.1155/2020/7532306 32596368
    [Google Scholar]
  57. RenX. HanL. LiY. ZhaoH. ZhangZ. ZhuangY. ZhongM. WangQ. MaW. WangY. Isorhamnetin attenuates TNF ‐α‐induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF‐κB pathways.Anat. Rec.2021304490191310.1002/ar.24506 32865318
    [Google Scholar]
  58. LiuZ. NiuX. WangJ. Naringenin as a natural immunomodulator against T cell-mediated autoimmune diseases: Literature review and network-based pharmacology study.Crit. Rev. Food Sci. Nutr.20236332110261104310.1080/10408398.2022.2092054 35776085
    [Google Scholar]
  59. MurataT. IshiwaS. LinX. NakazawaY. TagoK. TagoF.M. The citrus flavonoid, nobiletin inhibits neuronal inflammation by preventing the activation of NF-κB.Neurochem. Int.202317110561310.1016/j.neuint.2023.105613 37774798
    [Google Scholar]
  60. BakrimS. BenkhairaN. BouraisI. BenaliT. LeeL.H. OmariE.N. SheikhR.A. GohK.W. MingL.C. BouyahyaA. Health benefits and pharmacological properties of stigmasterol.Antioxidants20221110191210.3390/antiox11101912 36290632
    [Google Scholar]
  61. EngelmanJ.A. LuoJ. CantleyL.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.Nat. Rev. Genet.20067860661910.1038/nrg1879 16847462
    [Google Scholar]
  62. YaoX. MeiY. MaoW. Quercetin improves mitochondrial function and inflammation in H2O2-induced oxidative stress damage in the gastric mucosal epithelial cell by regulating the PI3K/AKT signaling pathway.Evid. Based Complement. Alternat. Med.20212021138607810.1155/2021/1386078
    [Google Scholar]
  63. RiM.H. LiM.Y. XingY. ZuoH.X. LiG. LiC. MaJ. JinX. Narirutin exerts anti‐inflammatory activity by inhibiting NLRP3 inflammasome activation in macrophages.Phytother. Res.20233741293130810.1002/ptr.7686 36751854
    [Google Scholar]
  64. BaiY. LiuF. WanY. WuX. LuoS. ZhangL. TangH. LiT. TangX. QinW. GanW. YangY. YinZ. XieY. GuoP. Network pharmacology combined with experimental validation reveals the mechanism of action of erpixing granules on functional dyspepsia.J. Ethnopharmacol.202433411855310.1016/j.jep.2024.118553 38992401
    [Google Scholar]
  65. ChoiW.G. ChoiN.R. ParkE.J. KimB.J. A study of the therapeutic mechanism of Jakyakgamcho-Tang about functional dyspepsia through network pharmacology research.Int. J. Med. Sci.20221913182410.7150/ijms.77451 36438925
    [Google Scholar]
  66. PatelS.A. NilssonM.B. LeX. CasconeT. JainR.K. HeymachJ.V. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy.Clin. Cancer Res.2023291303910.1158/1078‑0432.CCR‑22‑1366 35969170
    [Google Scholar]
  67. BurgerM.G. GrossoA. BriquezP.S. BornG.M.E. LungerA. SchrenkF. TodorovA. SacchiV. HubbellJ.A. SchaeferD.J. BanfiA. MaggioD.N. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration.Acta Biomater.202214911112510.1016/j.actbio.2022.07.014 35835287
    [Google Scholar]
  68. MelincoviciC.S. BoşcaA.B. ŞuşmanS. MărgineanM. MihuC. IstrateM. MoldovanI.M. RomanA.L. MihuC.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.2018592455467 30173249
    [Google Scholar]
  69. CarmelietP. VEGF as a key mediator of angiogenesis in cancer.Oncology200569S341010.1159/000088478 16301830
    [Google Scholar]
  70. FerraraN. Vascular endothelial growth factor: Basic science and clinical progress.Endocr. Rev.200425458161110.1210/er.2003‑0027 15294883
    [Google Scholar]
  71. HaydenM.S. GhoshS. Shared principles in NF-kappaB signaling.Cell2008132334436210.1016/j.cell.2008.01.020 18267068
    [Google Scholar]
  72. O’SheaJ.J. PlengeR. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease.Immunity201236454255010.1016/j.immuni.2012.03.014 22520847
    [Google Scholar]
  73. HardieD.G. AMPK--sensing energy while talking to other signaling pathways.Cell Metab.201420693995210.1016/j.cmet.2014.09.013 25448702
    [Google Scholar]
  74. SongS. GuoR. MehmoodA. ZhangL. YinB. YuanC. ZhangH. GuoL. LiB. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis‐related NLRP3 pathway.CNS Neurosci. Ther.202228342243410.1111/cns.13791 34985189
    [Google Scholar]
  75. JungT.W. ParkH.S. ChoiG.H. KimD. Lee, T β-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway.J. Biomed. Sci.20182512710.1186/s12929‑018‑0431‑7
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073358956241203101815
Loading
/content/journals/cchts/10.2174/0113862073358956241203101815
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test