Skip to content
2000
image of ARL6IP1 Inhibits Breast Cancer Tumor Progression by Targeting OLFM4 to Regulate Glycolysis

Abstract

Introduction

ARL6IP1 has been linked to cancer progression, but its precise role in BC, particularly in metabolism and its interaction with an OLFM4, remains unclear.

Aims

This study aimed to investigate the role of ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1) in breast cancer (BC) cell behavior and metabolism and explore its interaction with an olfactomedin-4 (OLFM4) as a potential therapeutic target.

Objective

The objective of this study was to determine the effects of knockdown on BC cell proliferation, invasion, migration, apoptosis, oxidative stress, and glycolysis. Additionally, this study also explored the interaction between ARL6IP1 and OLFM4 and their combined role in BC progression and metabolism.

Methods

Key gene modules in the GSE73540 dataset were identified through weighted gene co-expression network analysis (WGCNA). Three BC-related datasets (GSE73540, GSE22820, and GSE36295) and The Cancer Genome Atlas (TCGA) were applied for additional examination of differentially expressed genes (DEGs). Intersection analysis selected as a hub gene for prognostic analysis. In experiments investigated how knockdown influences BC cell proliferation, invasion, migration, apoptosis, epithelial-mesenchymal transition (EMT), oxidative stress, and glycolysis. The connection between ARL6IP1 and an OLFM4 was confirmed using Co-immunoprecipitation (Co-IP), and their roles in BC tumor progression and glycolysis were evaluated.

Results

was elevated in BC datasets and linked with poor BC prognosis. Experiments demonstrated that knockdown of significantly reduced BC cell growth while promoting apoptosis and oxidative stress. Besides, knockdown reduced glycolysis, as manifested by decreased extracellular acidification rate (ECAR), glucose consumption, adenosine triphosphate (ATP) levels, and lactate production while increasing mitochondrial respiration (OCR). Co-IP validated the connection between ARL6IP1 and OLFM4, and overexpression partially counteracted the suppression of glycolysis and cell behavior resulting from knockdown.

Conclusion

is a critical regulator of BC progression, influencing glycolysis, mitochondrial function, and key cellular behaviors. Targeting the ARL6IP1-OLFM4 axis offers a promising therapeutic strategy for managing BC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073358595250211053816
2025-05-27
2025-09-14
Loading full text...

Full text loading...

References

  1. Li Q. Xia C. Li H. Yan X. Yang F. Cao M. Zhang S. Teng Y. He S. Cao M. Chen W. Disparities in 36 cancers across 185 countries: Secondary analysis of global cancer statistics. Front. Med. 2024 18 5 911 920 10.1007/s11684‑024‑1058‑6 39167345
    [Google Scholar]
  2. Giaquinto A.N. Sung H. Newman L.A. Freedman R.A. Smith R.A. Star J. Jemal A. Siegel R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024 74 6 477 495 10.3322/caac.21863 39352042
    [Google Scholar]
  3. Henderson J.T. Webber E.M. Weyrich M.S. Miller M. Melnikow J. Screening for breast cancer. JAMA 2024 331 22 1931 1946 10.1001/jama.2023.25844 38687490
    [Google Scholar]
  4. Peng X. Yan B. Shen Y. MiR-1301-3p inhibits human breast cancer cell proliferation by regulating cell cycle progression and apoptosis through directly targeting ICT1. Breast Cancer 2018 25 6 742 752 10.1007/s12282‑018‑0881‑5 29951881
    [Google Scholar]
  5. Borgi M. Collacchi B. Ortona E. Cirulli F. Stress and coping in women with breast cancer:unravelling the mechanisms to improve resilience. Neurosci. Biobehav. Rev. 2020 119 406 421 10.1016/j.neubiorev.2020.10.011 33086128
    [Google Scholar]
  6. Duggan C. Trapani D. Ilbawi A.M. Fidarova E. Laversanne M. Curigliano G. Bray F. Anderson B.O. National health system characteristics, breast cancer stage at diagnosis, and breast cancer mortality: A population-based analysis. Lancet Oncol. 2021 22 11 1632 1642 10.1016/S1470‑2045(21)00462‑9 34653370
    [Google Scholar]
  7. Chen W. Hoffmann A.D. Liu H. Liu X. Organotropism: New insights into molecular mechanisms of breast cancer metastasis. NPJ Precis. Oncol. 2018 2 1 4 10.1038/s41698‑018‑0047‑0 29872722
    [Google Scholar]
  8. Venkitaraman A.R. How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? DNA Repair (Amst.) 2019 81 102668 10.1016/j.dnarep.2019.102668 31337537
    [Google Scholar]
  9. Lin Y. Karnan S. Ito H. Umezawa K. Suppression of ARL6ip1 inhibits malignant phenotypes of human colorectal cancer cells in vivo and in situ. Cancer Res. 2024 84 6_Supplement 4683 10.1158/1538‑7445.AM2024‑4683
    [Google Scholar]
  10. Guo F. Li Y. Liu Y. Wang J. Li G. ARL6IP1 mediates cisplatin-induced apoptosis in CaSki cervical cancer cells. Oncol. Rep. 2010 23 5 1449 1455 20372863
    [Google Scholar]
  11. Luo Z. Zhang Q. Zhao Z. Li B. Chen J. Wang Y. OLFM4 is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. J. Cancer Res. Clin. Oncol. 2011 137 11 1713 1720 10.1007/s00432‑011‑1042‑9 21904905
    [Google Scholar]
  12. Ohkuma R. Yada E. Ishikawa S. Komura D. Ishizaki H. Tamada K. Kubota Y. Hamada K. Ishida H. Hirasawa Y. Ariizumi H. Satoh E. Shida M. Watanabe M. Onoue R. Ando K. Tsurutani J. Yoshimura K. Yokobori T. Sasada T. Aoki T. Murakami M. Norose T. Ohike N. Takimoto M. Izumizaki M. Kobayashi S. Tsunoda T. Wada S. High expression of olfactomedin-4 is correlated with chemoresistance and poor prognosis in pancreatic cancer. PLoS One 2020 15 1 e0226707 10.1371/journal.pone.0226707 31923206
    [Google Scholar]
  13. Lin Z. Yang S. Zhou Y. Hou Z. Li L. Meng M. Ge C. Zeng B. Lai J. Gao H. Zhao Y. Xie Y. He S. Tang W. Li R. Tan J. Wang W. OLFM4 depletion sensitizes gallbladder cancer cells to cisplatin through the ARL6IP1/caspase-3 axis. Transl. Oncol. 2022 16 101331 10.1016/j.tranon.2021.101331 34974280
    [Google Scholar]
  14. Wu Z. Wu J. Zhao Q. Fu S. Jin J. Emerging roles of aerobic glycolysis in breast cancer. Clin. Transl. Oncol. 2020 22 5 631 646 10.1007/s12094‑019‑02187‑8 31359335
    [Google Scholar]
  15. Gatenby R.A. Gillies R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004 4 11 891 899 10.1038/nrc1478 15516961
    [Google Scholar]
  16. Liu S. Li Y. Yuan M. Song Q. Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front. Oncol. 2023 12 1060495 10.3389/fonc.2022.1060495 36776368
    [Google Scholar]
  17. Wang S. Wang N. Zheng Y. Yang B. Liu P. Zhang F. Li M. Song J. Chang X. Wang Z. Caveolin-1 inhibits breast cancer stem cells via c-Myc-mediated metabolic reprogramming. Cell Death Dis. 2020 11 6 450 10.1038/s41419‑020‑2667‑x 32528105
    [Google Scholar]
  18. Park MK Zhang L Min K-W Cho J-H Yeh C-C Moon H NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell metabolism. 2021 33 12 2380 10.1016/j.cmet.2021.11.011
    [Google Scholar]
  19. Chu Z. Huo N. Zhu X. Liu H. Cong R. Ma L. Kang X. Xue C. Li J. Li Q. You H. Zhang Q. Xu X. FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol. Ther. 2021 29 9 2737 2753 10.1016/j.ymthe.2021.04.036 33940159
    [Google Scholar]
  20. Tian Z. He W. Tang J. Liao X. Yang Q. Wu Y. Wu G. Identification of important modules and biomarkers in breast cancer based on WGCNA. OncoTargets Ther. 2020 13 6805 6817 10.2147/OTT.S258439 32764968
    [Google Scholar]
  21. Zeng F.R. Zhou X.Y. Zeng L.G. Sun J.C. He F. Mo W. Wen Y. Wang S.Y. Liu Q. Guo L.L. Identification of key genes and pathway related to chemoresistance of small cell lung cancer through an integrative bioinformatics analysis. Ann. Transl. Med. 2022 10 18 968 10.21037/atm‑22‑3642 36267705
    [Google Scholar]
  22. Bhalla V. Oyster N.M. Fitch A.C. Wijngaarden M.A. Neumann D. Schlattner U. Pearce D. Hallows K.R. AMP-activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4-2. J. Biol. Chem. 2006 281 36 26159 26169 10.1074/jbc.M606045200 16844684
    [Google Scholar]
  23. Yang J. Zhang K. Wu J. Shi J. Xue J. Li J. Chen J. Zhu Y. Wei J. He J. Liu X. Wnt5a increases properties of lung cancer stem cells and resistance to cisplatin through activation of Wnt5a/PKC signaling pathway. Stem Cells Int. 2016 2016 1 1690896 10.1155/2016/1690896 27895670
    [Google Scholar]
  24. Wu W. Yang J. Feng X. Wang H. Ye S. Yang P. Tan W. Wei G. Zhou Y. MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol. Cancer 2013 12 1 30 10.1186/1476‑4598‑12‑30 23617834
    [Google Scholar]
  25. Pastushenko I. Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019 29 3 212 226 10.1016/j.tcb.2018.12.001 30594349
    [Google Scholar]
  26. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  27. Zhang J. Lu C.Y. Chen C.H. Chen H.M. Wu S.Y. Effect of pathologic stages on postmastectomy radiation therapy in breast cancer receiving neoadjuvant chemotherapy and total mastectomy: A cancer database analysis. Breast 2020 54 70 78 10.1016/j.breast.2020.08.017 32947148
    [Google Scholar]
  28. Coughlin S.S. Social determinants of breast cancer risk, stage, and survival. Breast Cancer Res. Treat. 2019 177 3 537 548 10.1007/s10549‑019‑05340‑7 31270761
    [Google Scholar]
  29. Liu Z. Jiang Z. Gao Y. Wang L. Chen C. Wang X. TP53 mutations promote immunogenic activity in breast cancer. J. Oncol. 2019 2019 1 5952836 31275382
    [Google Scholar]
  30. Benor G. Fuks G. Chin S.F. Rueda O.M. Mukherjee S. Arandkar S. Aylon Y. Caldas C. Domany E. Oren M. Transcriptional profiling reveals a subset of human breast tumors that retain wt TP53 but display mutant p53‐associated features. Mol. Oncol. 2020 14 8 1640 1652 10.1002/1878‑0261.12736 32484602
    [Google Scholar]
  31. Natori Y. Suga J. Tokuda E. Tachibana K. Imai J. Honma R. Azami Y. Noda M. Sasaki E. Watanabe S. Ohtake T. Saji S. E3 ubiquitin ligase NEDD4 Affects estrogen receptor α expression and the prognosis of patients with hormone receptor-positive breast cancer. Cancers 2023 15 2 539 10.3390/cancers15020539 36672488
    [Google Scholar]
  32. Kontou A. Herman E.K. Field M.C. Dacks J.B. Koumandou V.L. Evolution of factors shaping the endoplasmic reticulum. Traffic 2022 23 9 462 473 10.1111/tra.12863 36040076
    [Google Scholar]
  33. Arif T. Stern O. Pittala S. Chalifa-Caspi V. Shoshan-Barmatz V. Rewiring of cancer cell metabolism by mitochondrial VDAC1 depletion results in time-dependent tumor reprogramming: Glioblastoma as a proof of concept. Cells 2019 8 11 1330 10.3390/cells8111330 31661894
    [Google Scholar]
  34. Deng H. Xu L. Ni H. Wang T. Liu M. Yang M. Shen H. Pan H. Yao M. Proteomic profiling reveals Arl6ip-1 as a candidate target in cancer-induced bone pain rat model after oxycodone treatment. Neurosci. Lett. 2019 699 151 159 10.1016/j.neulet.2019.01.045 30708128
    [Google Scholar]
  35. Wang J. Che F. Zhao Y. Wei L. Chen D. Dai C. Zhang B. Zhou X. Yang B. Chen Z. The prognostic and therapeutic roles of ARL-6 gene in hepatocellular carcinoma. Int. J. Med. Sci. 2024 21 2 207 218 10.7150/ijms.88039 38169538
    [Google Scholar]
  36. Jelic M.D. Mandic A.D. Maricic S.M. Srdjenovic B.U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021 17 1 22 28 10.4103/jcrt.JCRT_862_16 33723127
    [Google Scholar]
  37. Srinivas U.S. Tan B.W.Q. Vellayappan B.A. Jeyasekharan A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019 25 101084 10.1016/j.redox.2018.101084 30612957
    [Google Scholar]
  38. Malla R. Surepalli N. Farran B. Malhotra S.V. Nagaraju G.P. Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Crit. Rev. Oncol. Hematol. 2021 160 103285 10.1016/j.critrevonc.2021.103285 33716202
    [Google Scholar]
  39. Plasterer C. Semenikhina M. Tsaih S.W. Flister M.J. Palygin O. NNAT is a novel mediator of oxidative stress that suppresses ER + breast cancer. Mol. Med. 2023 29 1 87 10.1186/s10020‑023‑00673‑y 37400769
    [Google Scholar]
  40. Cosentino G. Plantamura I. Cataldo A. Iorio M.V. MicroRNA and oxidative stress interplay in the context of breast cancer pathogenesis. Int. J. Mol. Sci. 2019 20 20 5143 10.3390/ijms20205143 31627322
    [Google Scholar]
  41. Radenkovic S. Milosevic Z. Konjevic G. Karadzic K. Rovcanin B. Buta M. Gopcevic K. Jurisic V. Lactate dehydrogenase, catalase, and superoxide dismutase in tumor tissue of breast cancer patients in respect to mammographic findings. Cell Biochem. Biophys. 2013 66 2 287 295 10.1007/s12013‑012‑9482‑7 23197387
    [Google Scholar]
  42. Yu T.J. Cheng Y.B. Lin L.C. Tsai Y.H. Yao B.Y. Tang J.Y. Chang F.R. Yen C.H. Ou-Yang F. Chang H.W. Physalis peruviana-derived physapruin A (PHA) inhibits breast cancer cell proliferation and induces oxidative-stress-mediated apoptosis and DNA damage. Antioxidants 2021 10 3 393 10.3390/antiox10030393 33807834
    [Google Scholar]
  43. Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: Current insights into the classic metabolic phenotype. Crit. Rev. Biochem. Mol. Biol. 2018 53 6 667 682 10.1080/10409238.2018.1556578 30668176
    [Google Scholar]
  44. Bayar I Ekren Aşıcı GS Bildik A Kıral F Gene expression of glycolysis enzymes in MCF-7 breast cancer cells exposed to warburg effect and hypoxia. IJMCM 2024 13 1 45
    [Google Scholar]
  45. Ma X. Chen J. Huang B. Fu S. Qu S. Yu R. Zhao Y. ErbB2-upregulated HK1 and HK2 promote breast cancer cell proliferation, migration and invasion. Med. Oncol. 2023 40 5 154 10.1007/s12032‑023‑02008‑7 37079118
    [Google Scholar]
  46. Wang Z.Y. Loo T.Y. Shen J.G. Wang N. Wang D.M. Yang D.P. Mo S.L. Guan X.Y. Chen J.P. LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res. Treat. 2012 131 3 791 800 10.1007/s10549‑011‑1466‑6 21452021
    [Google Scholar]
  47. Klaas M. Mäemets-Allas K. Heinmäe E. Lagus H. Arak T. Eller M. Kingo K. Kankuri E. Jaks V. Olfactomedin-4 improves cutaneous wound healing by promoting skin cell proliferation and migration through POU5F1/OCT4 and ESR1 signalling cascades. Cell. Mol. Life Sci. 2022 79 3 157 10.1007/s00018‑022‑04202‑8 35218417
    [Google Scholar]
  48. Liu C. Guo Y. Wu W. Zhang Z. Xu L. Wu K. Hu W. Liu G. Shi J. Xu C. Bi J. Sheng Y. Plasma olfactomedin 4 level in peripheral blood and its association with clinical features of breast cancer. Oncol. Lett. 2017 14 6 8106 8113 10.3892/ol.2017.7193 29344255
    [Google Scholar]
  49. Fu J. Dong G. Shi H. Zhang J. Ning Z. Bao X. Liu C. Hu J. Liu M. Xiong B. LncRNA MIR503HG inhibits cell migration and invasion via miR‐103/OLFM4 axis in triple negative breast cancer. J. Cell. Mol. Med. 2019 23 7 4738 4745 10.1111/jcmm.14344 31062436
    [Google Scholar]
  50. Besson D. Pavageau A.H. Valo I. Bourreau A. Bélanger A. Eymerit-Morin C. Moulière A. Chassevent A. Boisdron-Celle M. Morel A. Solassol J. Campone M. Gamelin E. Barré B. Coqueret O. Guette C. A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol. Cell. Proteomics 2011 10 12 M111.009712 10.1074/mcp.M111.009712 21986994
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073358595250211053816
Loading
/content/journals/cchts/10.2174/0113862073358595250211053816
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Breast cancer ; OLFM4 ; glycolysis ; ARL6P1 ; tumor progression
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test