Skip to content
2000
Volume 28, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

HJ11 (HJ11 decoction), which is based on the traditional prescription Si-Miao-Yong-An decoction, has exerted a remarkable effect on atherosclerosis (AS). Nevertheless, the main components and underlying mechanisms of HJ11 for treating AS remain unclear.

Aim of the Study

This study was designed to elucidate the mechanism of HJ11 in the treatment of AS through network pharmacology and experimental validation.

Methods

Network pharmacology was employed to explore the primary bioactive components and targets of HJ11. AS-related genes were obtained from the GeneCards and DisGeNET databases and screened for intersections with HJ11. A herb-compound-target interaction network was constructed by Cytoscape 3.9.1, and molecular docking analyses were constructed on key targets. By using a mouse model, the mechanism of action of HJ11 was further confirmed.

Results

A total of 231 active components of HJ11, 1681 AS-related genes, and 156 common targets were identified. Through the establishment of numerous networks, it was discovered that the main association of the mechanism of HJ11 in AS therapy pertained to anti-inflammation. Important substances included quercetin, kaempferol, and luteolin, while TNF-α, AKT1, IL-6, and VEGFA were the main targets. Molecular docking demonstrated that there were favorable binding interactions between active drugs (quercetin, kaempferol, and luteolin) and targets (TNF-α, AKT1, IL-6, and VEGFA). In the study, HJ11 reduced the expression of TNF-α, AKT1, IL-6, and VEGFA at both the mRNA and protein levels, inhibited atherosclerotic lesions in AS mouse models, and retarded the development of retroarterioid sclerosis.

Conclusion

HJ11 can inhibit inflammation and the progression of AS, and the mechanism might involve downregulating the expression of TNF-α, AKT1, IL-6, and VEGFA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073356770241218065012
2025-01-21
2025-12-15
Loading full text...

Full text loading...

References

  1. ŠačićD. TomićU. MilašinJ. PutnikS. JovanovićM. Radojević ŠkodrićS. GlumacS. The detection of chlamydia pneumoniae, Helicobacter pylori and Cytomegalovirus in non-atherosclerotic arteries of patients with coronary artery disease.Pathogens2024131192710.3390/pathogens13110927 39599480
    [Google Scholar]
  2. LeeY.N. WuY.J. SuC.H. WangB.J. YangS.H. LeeH.I. ChouY.H. TienT.Y. LinC.F. ChanW.H. ChungC.H. WangS.W. YehH.I. Fluorescent gold nanoclusters possess multiple actions against atherosclerosis.Redox Biol.202478103427Epub ahead of print10.1016/j.redox.2024.103427 39566163
    [Google Scholar]
  3. LibbyP. BuringJ.E. BadimonL. HanssonG.K. DeanfieldJ. BittencourtM.S. TokgözoğluL. LewisE.F. Atherosclerosis.Nat. Rev. Dis. Primers2019515610.1038/s41572‑019‑0106‑z 31420554
    [Google Scholar]
  4. KotonS. PikeJ.R. JohansenM. KnopmanD.S. LakshminarayanK. MosleyT. PatoleS. RosamondW.D. SchneiderA.L.C. SharrettA.R. WruckL. CoreshJ. GottesmanR.F. Association of ischemic stroke incidence, severity, and recurrence with dementia in the atherosclerosis risk in communities cohort study.JAMA Neurol.202279327128010.1001/jamaneurol.2021.5080 35072712
    [Google Scholar]
  5. LangsjoenP.H. LangsjoenJ.O. LangsjoenA.M. RosenfeldtF. Statin-associated cardiomyopathy responds to statin withdrawal and administration of coenzyme Q 10.Perm. J.20192341825710.7812/TPP/18.257 31496499
    [Google Scholar]
  6. CederbergH. StančákováA. YaluriN. ModiS. KuusistoJ. LaaksoM. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: A 6 year follow-up study of the METSIM cohort.Diabetologia20155851109111710.1007/s00125‑015‑3528‑5 25754552
    [Google Scholar]
  7. RidkerP.M. EverettB.M. ThurenT. MacFadyenJ.G. ChangW.H. BallantyneC. FonsecaF. NicolauJ. KoenigW. AnkerS.D. KasteleinJ.J.P. CornelJ.H. PaisP. PellaD. GenestJ. CifkovaR. LorenzattiA. ForsterT. KobalavaZ. Vida-SimitiL. FlatherM. ShimokawaH. OgawaH. DellborgM. RossiP.R.F. TroquayR.P.T. LibbyP. GlynnR.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa1707914 28845751
    [Google Scholar]
  8. JukemaR.A. AhmedT.A.N. TardifJ.C. Does low-density lipoprotein cholesterol induce inflammation? If so, does it matter? Current insights and future perspectives for novel therapies.BMC Med.201917119710.1186/s12916‑019‑1433‑3 31672136
    [Google Scholar]
  9. WeberC. von HundelshausenP. CANTOS Trial validates the inflammatory pathogenesis of atherosclerosis.Circ. Res.2017121101119112110.1161/CIRCRESAHA.117.311984 29074528
    [Google Scholar]
  10. HuffmanM.D. de CatesA.N. EbrahimS. Fixed-dose combination therapy (polypill) for the prevention of cardiovascular disease.JAMA2014312192030203110.1001/jama.2014.13616 25399279
    [Google Scholar]
  11. LiuZ.H. SunX.B. Network pharmacology: New opportunity for the modernization of traditional Chinese medicine.Yao Xue Xue Bao2012476696703 22919715
    [Google Scholar]
  12. JiangY. ZhuY. ZhenT. LiJ. XingK. HeL. ZhuS. Transcriptomic analysis of the mechanisms of alleviating renal interstitial fibrosis using the traditional Chinese medicine Kangxianling in a rat model.Sci. Rep.20201011068210.1038/s41598‑020‑67690‑3 32606425
    [Google Scholar]
  13. DuA. XieY. OuyangH. LuB. JiaW. XuH. JiL. Si-Miao-Yong-An Decoction for diabetic retinopathy: A combined network pharmacological and in vivo approach.Front. Pharmacol.20211276316310.3389/fphar.2021.763163 34899317
    [Google Scholar]
  14. SuC. WangQ. ZhangH. JiaoW. LuoH. LiL. ChenX. LiuB. YuX. LiS. WangW. GuoS. Si-Miao-Yong-An Decoction protects against cardiac hypertrophy and dysfunction by inhibiting platelet aggregation and activation.Front. Pharmacol.20191099010.3389/fphar.2019.00990 31619988
    [Google Scholar]
  15. CuiW. XinS. ZhuL. WangM. HaoY. ZhaoY. LiY. HouY. Si-Miao-Yong-An Decoction maintains the cardiac function and protects cardiomyocytes from myocardial ischemia and reperfusion injury.Evid. Based Complement. Alternat. Med.2021202111110.1155/2021/8968464 34367308
    [Google Scholar]
  16. ChuC. SunS. ZhangZ. WuQ. LiH. LiangG. MiaoX. JiangH. GaoY. ZhangY. WangB. LiX. Si-Miao-Yong-An Decoction alleviates thromboangiitis obliterans by regulating miR-548j-5p/IL-17A signaling pathway.Chin. J. Nat. Med.202422654155310.1016/S1875‑5364(24)60626‑6 38906601
    [Google Scholar]
  17. XuZ. ZhangL. HuangfuN. JiangF. JiK. WangS. Exploring the effect and mechanism of si-miao-yong-an decoction on abdominal aortic aneurysm based on mice experiment and bioinformatics analysis.Evid. Based Complement. Alternat. Med.2022202211510.1155/2022/4766987 35685724
    [Google Scholar]
  18. ZouJ. XuW. LiZ. GaoP. ZhangF. CuiY. HuJ. Network pharmacology-based approach to research the effect and mechanism of Si-Miao-Yong-An decoction against thromboangiitis obliterans.Ann. Med.2023551221810510.1080/07853890.2023.2218105 37318081
    [Google Scholar]
  19. QiZ. YanZ. ZhuK. WangY. FanY. LiT. ZhangJ. Novel treatment from a botanical formulation Si-Miao-Yong-an decoction inhibits vasa vasorum angiogenesis and stabilizes atherosclerosis plaques via the Wnt1/β-catenin signalling pathway.Pharm. Biol.20236111364137310.1080/13880209.2023.2249061 37651108
    [Google Scholar]
  20. LiM. QiZ. ZhangJ. ZhuK. WangY. Effect and mechanism of si-miao-yong-an on vasa vasorum remodeling in apoe−/− mice with atherosclerosis vulnerable plague.Front. Pharmacol.20211263461110.3389/fphar.2021.634611 33935723
    [Google Scholar]
  21. QiZ. LiM. ZhuK. ZhangJ. Si-Miao-Yong-An on promoting the maturation of vasa vasorum and stabilizing atherosclerotic plaque in ApoE-/- mice: An experimental study.Biomed. Pharmacother.201911410878510.1016/j.biopha.2019.108785 30909142
    [Google Scholar]
  22. ChenX.N. GeQ.H. ZhaoY.X. GuoX.C. ZhangJ.P. Effect of Si-Miao-Yong-An decoction on the differentiation of monocytes, macrophages, and regulatory T cells in ApoE−/− mice.J. Ethnopharmacol.202127611417810.1016/j.jep.2021.114178 33945857
    [Google Scholar]
  23. HuJ. Introduction of heat coagulation of blood vessels. World Sci. Technol.-.Modernizat. Traditi. Chin. Medic.2019211020052008
    [Google Scholar]
  24. ZhaoN. WangY. MaY. LiangX. ZhangX. GaoY. DongY. BaiD. HuJ. Jia-wei-si-miao-yong-an decoction modulates intestinal flora and metabolites in acute coronary syndrome model.Front. Cardiovasc. Med.20239103827310.3389/fcvm.2022.1038273 36684592
    [Google Scholar]
  25. ZhangF. LiZ. GaoP. ZouJ. CuiY. QianY. GuR. XuW. HuJ. HJ11 decoction restrains development of myocardial ischemia-reperfusion injury in rats by suppressing ACSL4-mediated ferroptosis.Front. Pharmacol.202213102429210.3389/fphar.2022.1024292 36483736
    [Google Scholar]
  26. ZhouZ. ChenB. ChenS. LinM. ChenY. JinS. ChenW. ZhangY. Applications of network pharmacology in traditional chinese medicine research.Evid. Based Complement. Alternat. Med.202020201164690510.1155/2020/1646905 32148533
    [Google Scholar]
  27. ZhangL. LiH. ZhangL. ZuZ. XuD. ZhangJ. Network pharmacology analysis of the mechanisms underlying the therapeutic effects of yangjing zhongyu tang on thin endometrium.Drug Des. Devel. Ther.2023171805181810.2147/DDDT.S409659 37350984
    [Google Scholar]
  28. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  29. YangH.Y. LiuM.L. LuoP. YaoX.S. ZhouH. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine.Phytomedicine202210415426810.1016/j.phymed.2022.154268 35777118
    [Google Scholar]
  30. WangX. WangY. YuanT. WangH. ZengZ. TianL. CuiL. GuoJ. ChenY. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension.Phytomedicine2024135156062Epub ahead of print10.1016/j.phymed.2024.156062 39305743
    [Google Scholar]
  31. OtasekD. MorrisJ.H. BouçasJ. PicoA.R. DemchakB. Cytoscape Automation: Empowering workflow-based network analysis.Genome Biol.201920118510.1186/s13059‑019‑1758‑4 31477170
    [Google Scholar]
  32. ChinCH ChenSH WuHH HoCW KoMT Lin, CY cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20144Suppl 4S1110.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  33. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  34. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  35. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  36. YangX.R. WatE. WangY.P. KoC.H. KoonC.M. SiuW.S. GaoS. CheungD.W.S. LauC.B.S. YeC.X. LeungP.C. Effect of dietary cocoa tea (camellia ptilophylla) supplementation on high-fat diet-induced obesity, hepatic steatosis, and hyperlipidemia in mice.Evid. Based Complement. Alternat. Med.2013201311110.1155/2013/783860 23935682
    [Google Scholar]
  37. LibbyP. Inflammation in atherosclerosis—no longer a theory.Clin. Chem.202167113114210.1093/clinchem/hvaa275 33393629
    [Google Scholar]
  38. Ait-OufellaH. LibbyP. Inflammation and atherosclerosis: prospects for clinical trials.Arterioscler. Thromb. Vasc. Biol.20244491899190510.1161/ATVBAHA.124.320155 39167675
    [Google Scholar]
  39. TsukaharaT. TsukaharaR. HaniuH. MatsudaY. Murakami-MurofushiK. Cyclic phosphatidic acid inhibits the secretion of vascular endothelial growth factor from diabetic human coronary artery endothelial cells through peroxisome proliferator-activated receptor gamma.Mol. Cell. Endocrinol.201541232032910.1016/j.mce.2015.05.021 26007326
    [Google Scholar]
  40. AllenS.C. MamotteC.D.S. Pleiotropic and adverse effects of statins—do epigenetics play a role?J. Pharmacol. Exp. Ther.2017362231932610.1124/jpet.117.242081 28576976
    [Google Scholar]
  41. du SouichP. RoedererG. DufourR. Myotoxicity of statins: Mechanism of action.Pharmacol. Ther.201717511610.1016/j.pharmthera.2017.02.029 28223230
    [Google Scholar]
  42. WangY. GaoJ. SunL. LiQ. KangN. GaoC. LiT. Jia-Wei-Si-Miao-Yong-An Fang stimulates the healing of acute radiation-induced cutaneous wounds through MAPK/ERK pathway.J. Ethnopharmacol.202330611618010.1016/j.jep.2023.116180 36693549
    [Google Scholar]
  43. BastaG. SchmidtA.M. De CaterinaR. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes.Cardiovasc. Res.200463458259210.1016/j.cardiores.2004.05.001 15306213
    [Google Scholar]
  44. WangN. ZhangX. MaZ. NiuJ. MaS. WenjieW. ChenJ. Combination of tanshinone IIA and astragaloside IV attenuate atherosclerotic plaque vulnerability in ApoE(-/-) mice by activating PI3K/AKT signaling and suppressing TRL4/NF-κB signaling.Biomed. Pharmacother.202012310972910.1016/j.biopha.2019.109729 31887543
    [Google Scholar]
  45. AarupA. PedersenT.X. JunkerN. ChristoffersenC. BartelsE.D. MadsenM. NielsenC.H. NielsenL.B. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20163691782179010.1161/ATVBAHA.116.307830 27444197
    [Google Scholar]
  46. ObohG. AdemosunA.O. OgunsuyiO.B. Quercetin and its role in chronic diseases.Adv. Exp. Med. Biol.201692937738710.1007/978‑3‑319‑41342‑6_17 27771934
    [Google Scholar]
  47. ZhangZ.Y. LvX.Y. ZhouX.P. XiangH.T. HeY.S. LiX.Y. YanT.T. ZhongY.Y. LiZ. ZhangB.S. The mechanism of quercetin in treating intracerebral hemorrhage was investigated by network pharmacology and molecular docking.Medicine202410340e4001010.1097/MD.0000000000040010 39465696
    [Google Scholar]
  48. HosseiniA. RazaviB.M. BanachM. HosseinzadehH. Quercetin and metabolic syndrome: A review.Phytother. Res.202135105352536410.1002/ptr.7144 34101925
    [Google Scholar]
  49. CaoH. JiaQ. YanL. ChenC. XingS. ShenD. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in OX-LDL-induced RAW264.7 macrophage foam cells.Int. J. Mol. Sci.20192023609310.3390/ijms20236093 31816893
    [Google Scholar]
  50. CuiZ. ZhaoX. AmevorF.K. DuX. WangY. LiD. ShuG. TianY. ZhaoX. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism.Front. Immunol.20221394332110.3389/fimmu.2022.943321 35935939
    [Google Scholar]
  51. RuiShi ZhaozhengLiu JinzhuYin YueDeng Quercetin relieves coronary atherosclerosis via regulating fibroblast growth factor 2.Cell. Mol. Biol.2023691522322910.14715/cmb/2023.69.15.38 38279437
    [Google Scholar]
  52. WangY. ChuT. WanR. NiuW. BianY. LiJ. Quercetin ameliorates atherosclerosis by inhibiting inflammation of vascular endothelial cells via Piezo1 channels.Phytomedicine202413215586510.1016/j.phymed.2024.155865 39004029
    [Google Scholar]
  53. JiangY.H. JiangL.Y. WangY.C. MaD.F. LiX. Quercetin attenuates atherosclerosis via modulating oxidized ldl-induced endothelial cellular senescence.Front. Pharmacol.20201151210.3389/fphar.2020.00512 32410992
    [Google Scholar]
  54. ChenM. XiaoJ. El-SeediH.R. WoźniakK.S. DagliaM. LittleP.J. WengJ. XuS. Kaempferol and atherosclerosis: From mechanism to medicine.Crit. Rev. Food Sci. Nutr.20246482157217510.1080/10408398.2022.2121261 36099317
    [Google Scholar]
  55. FengZ. WangC. JinY. MengQ. WuJ. SunH. SunH. Kaempferol-induced GPER upregulation attenuates atherosclerosis via the PI3K/AKT/Nrf2 pathway.Pharm. Biol.20215911104111410.1080/13880209.2021.1961823 34403325
    [Google Scholar]
  56. ZhaoJ. LingL. ZhuW. YingT. YuT. SunM. ZhuX. DuY. ZhangL. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis.J. Control. Release20233531068108310.1016/j.jconrel.2022.12.041 36549391
    [Google Scholar]
  57. ChuT WangY WangS LiJ LiZ WeiZ LiJ BianY Kaempferol regulating macrophage foaming and atherosclerosis through Piezo1-mediated MAPK/NF-κB and Nrf2/HO-1 signaling pathway.J. Adv. Res.202417S2090-1232(24)00535-6
    [Google Scholar]
  58. TangR. LinL. LiuY. LiH. Bibliometric and visual analysis of global publications on kaempferol.Front. Nutr.202411144257410.3389/fnut.2024.1442574 39221164
    [Google Scholar]
  59. DingX. ZhengL. YangB. WangX. YingY. Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response.Drug Des. Devel. Ther.2019133899391110.2147/DDDT.S207185 31819365
    [Google Scholar]
  60. LiJ. DongJ.Z. RenY.L. ZhuJ.J. CaoJ.N. ZhangJ. PanL.L. Luteolin decreases atherosclerosis in LDL receptor-deficient mice via a mechanism including decreasing AMPK-SIRT1 signaling in macrophages.Exp. Ther. Med.20181632593259910.3892/etm.2018.6499 30186491
    [Google Scholar]
  61. LibbyP. RidkerP.M. HanssonG.K. Inflammation in atherosclerosis.J. Am. Coll. Cardiol.200954232129213810.1016/j.jacc.2009.09.009 19942084
    [Google Scholar]
  62. LibbyP. OkamotoY. RochaV.Z. FolcoE. Inflammation in atherosclerosis: Transition from theory to practice.Circ. J.201074221322010.1253/circj.CJ‑09‑0706 20065609
    [Google Scholar]
  63. RaggiP. GenestJ. GilesJ.T. RaynerK.J. DwivediG. BeanlandsR.S. GuptaM. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions.Atherosclerosis20182769810810.1016/j.atherosclerosis.2018.07.014 30055326
    [Google Scholar]
  64. Pedro-BotetJ ClimentE BenaigesD. Atherosclerosis and inflammation. New therapeutic approachesMed. Clin.2020155625626210.1016/j.medcli.2020.04.024 32571617
    [Google Scholar]
  65. GeovaniniG.R. LibbyP. Atherosclerosis and inflammation: Overview and updates.Clin. Sci.2018132121243125210.1042/CS20180306 29930142
    [Google Scholar]
  66. TardifJ.C. KouzS. WatersD.D. BertrandO.F. DiazR. MaggioniA.P. PintoF.J. IbrahimR. GamraH. KiwanG.S. BerryC. López-SendónJ. OstadalP. KoenigW. AngoulvantD. GrégoireJ.C. LavoieM.A. DubéM.P. RhaindsD. ProvencherM. BlondeauL. OrfanosA. L’AllierP.L. GuertinM.C. RoubilleF. Efficacy and safety of low-dose colchicine after myocardial infarction.N. Engl. J. Med.2019381262497250510.1056/NEJMoa1912388 31733140
    [Google Scholar]
  67. NidorfS.M. FioletA.T.L. MosterdA. EikelboomJ.W. SchutA. OpstalT.S.J. The SHK, Xu XF, Ireland MA, Lenderink T, Latchem D, Hoogslag P, Jerzewski A, Nierop P, Whelan A, Hendriks R, Swart H, Schaap J, Kuijper AFM, van Hessen MWJ, Saklani P, Tan I, Thompson AG, Morton A, Judkins C, Bax WA, Dirksen M, Alings M, Hankey GJ, Budgeon CA, Tijssen JGP, Cornel JH, Thompson PL; LoDoCo2 trial investigators. colchicine in patients with chronic coronary disease.N. Engl. J. Med.2020383191838184710.1056/NEJMoa2021372 32865380
    [Google Scholar]
  68. McKellarG.E. McCareyD.W. SattarN. McInnesI.B. Role for TNF in atherosclerosis? Lessons from autoimmune disease.Nat. Rev. Cardiol.20096641041710.1038/nrcardio.2009.57 19421244
    [Google Scholar]
  69. Fernández-HernandoC. AckahE. YuJ. SuárezY. MurataT. IwakiriY. PrendergastJ. MiaoR.Q. BirnbaumM.J. SessaW.C. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease.Cell Metab.20076644645710.1016/j.cmet.2007.10.007 18054314
    [Google Scholar]
  70. TyrrellD.J. GoldsteinD.R. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6.Nat. Rev. Cardiol.2021181586810.1038/s41569‑020‑0431‑7 32918047
    [Google Scholar]
  71. EdsfeldtA. GonçalvesI. VigrenI. JovanovićA. EngströmG. ShoreA.C. NataliA. KhanF. NilssonJ. Circulating soluble IL-6 receptor associates with plaque inflammation but not with atherosclerosis severity and cardiovascular risk.Vascul. Pharmacol.202315210721410.1016/j.vph.2023.107214 37634789
    [Google Scholar]
  72. FigueiraL. GonzálezJC Effect of resveratrol on seric vascular endothelial growth factor concentrations during atherosclerosis. Clíni.Investigac. Arterioscler.201830520921610.1016/j.artere.2018.08.002
    [Google Scholar]
  73. YuZ.M. DengX.T. QiR.M. XiaoL.Y. YangC.Q. GongT. Mechanism of chronic stress-induced reduced atherosclerotic medial area and increased plaque instability in rabbit models of chronic stress.Chin. Med. J.2018131216117010.4103/0366‑6999.222322 29336364
    [Google Scholar]
  74. TangJ. DiaoP. ShuX. LiL. XiongL. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells: In vitro assessment and a theoretical model.Biomed. Res. Int.20192019703980210.1155/2019/7039802 31781635
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073356770241218065012
Loading
/content/journals/cchts/10.2174/0113862073356770241218065012
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test