Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Reproductive endocrine disorder can impair endometrial receptivity, preventing embryo implantation and increasing miscarriage risk. Impaired endometrial receptivity contributes significantly to female infertility. Inflammatory signaling pathways including the IL-6/STAT3 pathway help embryos implant. Therefore, it is crucial to explore the relationship between the IL-6/STAT3 signaling pathway and endometrial receptivity.

Objective

To investigate the mechanism by which Bushen Zhuyun decoction (BSZY) enhances endometrial receptivity in rats through the IL-6/STAT3 signaling pathway.

Methods

Mifepristone-induced poor endometrial receptivity models of female SD rats were established, followed by histopathological observation. ELISA was used to measure serum sex hormones and VEGF. Western blotting or IHC was used to measure steroid receptors, IGFBP1, and IL-6/STAT3 pathway activation in the uterus during each estrus cycle and early gestation of normal rats. The Treg/Th17 balance was assessed using flow cytometry.

Results

Significant differences were found in the protein expressions of steroid receptors, IL-6, STAT3, and p-STAT3 during each estrus cycle and early gestation of normal rats. The protein expressions of STAT3 and PR were strongly correlated with each other. BSZY notably improved uterine morphology increased the expression of implantation markers and raised the serum concentrations of sex hormones and VEGF. BSZY enhanced the expressions of IL-6 and its receptors and restored the expressions of STAT3 and p-STAT3 in the uterus of pregnant rats. In addition, BSZY effectively restored the Treg/Th17 balance in the peripheral blood of pregnant rats.

Conclusion

BSZY enhances endometrial receptivity and promotes decidualization in SD rats the IL-6/STAT3 signaling pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073351630241128182125
2024-11-29
2025-12-30
Loading full text...

Full text loading...

References

  1. HartR.J. Physiological aspects of female fertility: Role of the environment, modern lifestyle, and genetics.Physiol. Rev.201696387390910.1152/physrev.00023.2015 27252278
    [Google Scholar]
  2. CoxC.M. ThomaM.E. TchangalovaN. MburuG. BornsteinM.J. JohnsonC.L. KiarieJ. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis.Hum. Reprod. Open202220224hoac05110.1093/hropen/hoac051 36483694
    [Google Scholar]
  3. GinsburgK.A. Luteal phase defect. Etiology, diagnosis, and management.Endocrinol. Metab. Clin. North Am.19922118510410.1016/S0889‑8529(18)30233‑0 1576984
    [Google Scholar]
  4. Practice Committees of the American Society for Reproductive Medicine and the Society for Reproductive Endocrinology and In fertility. Diagnosis and treatment of luteal phase deficiency: A committee opinion.Fertil. Steril.202111561416142310.1016/j.fertnstert.2021.02.010 33827766
    [Google Scholar]
  5. ScholefieldH. Preface.Best Pract. Res. Clin. Obstet. Gynaecol.200822576176210.1016/j.bpobgyn.2008.07.002 18722164
    [Google Scholar]
  6. BillhaqD.H. LeeS.H. LeeS. The potential function of endometrial‐secreted factors for endometrium remodeling during the estrous cycle.Anim. Sci. J.2020911e1333310.1111/asj.13333 31909524
    [Google Scholar]
  7. van der LindenM. BuckinghamK. FarquharC. KremerJ.A.M. MetwallyM. Luteal phase support for assisted reproduction cycles.Cochrane Libr.2015201610CD00915410.1002/14651858.CD009154.pub3 26148507
    [Google Scholar]
  8. SunY. LiuP. YeH. Consensus on luteal support and progesterone supplementation.J. Reprod. Contrac.20153511810.7669/j.issn.0253‑357X.2015.01.0001
    [Google Scholar]
  9. GargA. ZielinskaA.P. YeungA.C. AbdelmalakR. ChenR. HossainA. IsraniA. NelsonS.M. BabwahA.V. DhilloW.S. AbbaraA. Luteal phase support in assisted reproductive technology.Nat. Rev. Endocrinol.202420314916710.1038/s41574‑023‑00921‑5 38110672
    [Google Scholar]
  10. CaoZ. ZhouH. Effect of Bushen Zhuyun recipe on PKC/MAPK/ERK signal pathway and luteal function of pituitary in rats with luteal insufficiency.J. Tradit. Chin. Med.2021620980881310.13288/j.11‑2166/r.2021.09.014
    [Google Scholar]
  11. LiuB. ZhouH. ZhouB. Regulation of BuShen ZhuYun Decotion on gonadotropin in rat pituitary cells.J. Med. Postgrad.2018310770370810.16571/j.cnki.1008‑8199.2018.07.007
    [Google Scholar]
  12. TangX. ZhouH. FengH. Mechanism of Bushen Zhuyun Prescription on Improving Luteal Function of Brown Norway Rats Based on MAPKs Signaling Pathway.Zhongguo Shiyan Fangjixue Zazhi20222812788510.13422/j.cnki.syfjx.20220904
    [Google Scholar]
  13. YangL. ZhouB. DaiJ. ZhouH. Bushen Zhuyun Recipe improves the morphology of the gonad axis of rats with mifepristone-induced luteal phase defect.Journal of Medical Postgraduates.201528101012101610.16571/j.cnki.1008‑8199.2015.10.002
    [Google Scholar]
  14. Mechanism of bushen zhuyun prescrption in treatment of LPD by reducing apoptotic levels of ovary based on network pharmacology and animal experiment.Trad. Chin. Medi. Inform.202239041910.19656/j.cnki.1002‑2406.20220401
    [Google Scholar]
  15. WangX. TongY. ZhangH. ZouY. DingY. LiuB. ZhouW. ShanJ. JiJ. SuW. LiuY. ZHouH. Bushen zhuyun decoction improves endometrial receptivity by inhibiting NF-κB/NLRP3 signaling pathway.Comb. Chem. High Through. Scr20242710.2174/0113862073309790240711110744 39021185
    [Google Scholar]
  16. SinghR.K. Key heterocyclic cores for smart anticancer drug–design Part II.Bentham Science Publishers202210.2174/97898150400741220101
    [Google Scholar]
  17. HuX. li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: from bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  18. KimM. MoralesL.D. JangI.S. ChoY.Y. KimD.J. Protein tyrosine phosphatases as potential regulators of STAT3 signaling.Int. J. Mol. Sci.2018199270810.3390/ijms19092708 30208623
    [Google Scholar]
  19. ZhouM. XuH. ZhangD. SiC. ZhouX. ZhaoH. LiuQ. XuB. ZhangA. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization.J. Adv. Res.202130152510.1016/j.jare.2020.09.002 34026283
    [Google Scholar]
  20. PeñaS. RubioM. VargasC. AlanisC. ParedesA.H. Participation of leukaemia inhibitory factor in follicular development and steroidogenesis in rat ovaries.J. Endocrinol.20232581e22025510.1530/JOE‑22‑0255 37078922
    [Google Scholar]
  21. YuM. PengX. LiH. XuY. SunX. ChenJ. Gankyrin has a potential role in embryo implantation via activation of STAT3.Reproduction2022163315716510.1530/REP‑21‑0199 35038312
    [Google Scholar]
  22. LiuZ SongY HuR Bushen Antai recipe ameliorates immune microenvironment and maternal-fetal vascularization in STAT3-deficient abortion-prone miceJ Ethnopharmacol2024318Pt A11688910.1016/j.jep.2023.116889
    [Google Scholar]
  23. BoulangerM.J. ChowD. BrevnovaE.E. GarciaK.C. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex.Science200330056282101210410.1126/science.1083901 12829785
    [Google Scholar]
  24. Rose-JohnS. JenkinsB.J. GarbersC. MollJ.M. SchellerJ. Targeting IL-6 trans-signalling: Past, present and future prospects.Nat. Rev. Immunol.2023231066668110.1038/s41577‑023‑00856‑y 37069261
    [Google Scholar]
  25. Rose-JohnS. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6.Int. J. Biol. Sci.2012891237124710.7150/ijbs.4989 23136552
    [Google Scholar]
  26. ZhaoW. SunG. Dose Conversion of dosage among different experimental animals.J. Animal Husb. Vet. Sci. Tech. Info.2010201055253
    [Google Scholar]
  27. MaoL. WangX. SunY. YangM. ChenX. CuiL. BaiW. Platelet-rich fibrin improves repair and regeneration of damaged endometrium in rats.Front. Endocrinol. (Lausanne)202314115495810.3389/fendo.2023.1154958 37614713
    [Google Scholar]
  28. LiY. ZengX. LuD. YinM. ShanM. GaoY. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis.Hum. Reprod.202136495196410.1093/humrep/deaa363 33378529
    [Google Scholar]
  29. PluimD. BuitelaarP. de JongK.A.M. RosingH. BrandsmaD. HuitemaA.D.R. BeijnenJ.H. ELISA assay for the quantification of ipilimumab in human serum, plasma, milk, and cerebrospinal fluid.J. Pharm. Biomed. Anal.202424511614010.1016/j.jpba.2024.116140 38701533
    [Google Scholar]
  30. LiZ. SunQ. LiuQ. MuX. WangH. ZhangH. QinF. WangQ. NieD. LiuA. LiQ. JiJ. JiangY. LuS. WangQ. LuZ. Compound 511 ameliorates MRSA-induced lung injury by attenuating morphine-induced immunosuppression in mice via PI3K/AKT/mTOR pathway.Phytomedicine202310815447510.1016/j.phymed.2022.154475 36252465
    [Google Scholar]
  31. ZhangH. GeS. NiB. HeK. ZhuP. WuX. ShaoY. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages.Autophagy202117124218423010.1080/15548627.2021.1909833 33849389
    [Google Scholar]
  32. XuD. ZhouH. HongY. LiuY. Experience of TCM master XIA Gui-cheng in the treatment of infertility due to inadequate luteal function.Zhonghua Zhongyiyao Zazhi20213602813817
    [Google Scholar]
  33. ZhuA. YaoF. ShenM. Oxycodone alleviates mifepristone‐stimulated human endometrial stromal cell injury by activating the Keap1/Nrf2/HO‐1 signaling pathway.Immun. Inflamm. Dis.2023119e100810.1002/iid3.1008 37773689
    [Google Scholar]
  34. HarmsP.W. FrankelT.L. MoutafiM. RaoA. RimmD.L. TaubeJ.M. ThomasD. ChanM.P. PantanowitzL. Multiplex Immunohistochemistry and Immunofluorescence: A Practical Update for Pathologists.Mod. Pathol.202336710019710.1016/j.modpat.2023.100197 37105494
    [Google Scholar]
  35. LuoJ. QiQ. ChenY. WangY. XieQ. Effect of GnRH-antagonist, mifepristone and letrozole on preventing ovarian hyperstimulation syndrome in rat model.Reprod. Biomed. Online202142229130010.1016/j.rbmo.2020.10.006 33249057
    [Google Scholar]
  36. WangF. FerreiraL.M.R. MazzantiA. YuH. GuB. MeissnerT.B. LiQ. StromingerJ.L. Progesterone-mediated remodeling of the maternal-fetal interface by a PGRMC1-dependent mechanism.J. Reprod. Immunol.202416310424410.1016/j.jri.2024.104244 38555747
    [Google Scholar]
  37. NiliF. SadriM. AmeliF. Utility of AMACR immunohistochemical staining in differentiating Arias-Stella reaction from clear cell carcinoma of ovary and endometrium.BMC Cancer202323133210.1186/s12885‑023‑10753‑1 37041497
    [Google Scholar]
  38. NagyB. Szekeres-BarthóJ. KovácsG.L. SulyokE. FarkasB. VárnagyÁ. VértesV. KovácsK. BódisJ. Key to life: physiological role and clinical implications of progesterone.Int. J. Mol. Sci.202122201103910.3390/ijms222011039 34681696
    [Google Scholar]
  39. ParisiF. FeniziaC. IntroiniA. ZavattaA. ScaccabarozziC. BiasinM. SavasiV. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester.Hum. Reprod. Update202329669972010.1093/humupd/dmad016 37353909
    [Google Scholar]
  40. LiaoZ. TangS. NozawaK. ShimadaK. IkawaM. MonsivaisD. MatzukM. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy.eLife202412RP9143410.7554/eLife.91434.4 38536963
    [Google Scholar]
  41. DuanH. XiaoL. HuJ. ZhangY. ZhaoX. GeW. JiangY. SongL. YangS. LuoW. Expression of oestrogen receptor, androgen receptor and progesterone nuclear receptor in sheep uterus during the oestrous cycle.Reprod. Domest. Anim.201954101305131210.1111/rda.13489 31188500
    [Google Scholar]
  42. KowalikM.K. RekawieckiR. KotwicaJ. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy.Theriogenology20148281086109310.1016/j.theriogenology.2014.07.021 25168721
    [Google Scholar]
  43. DhimanA. SharmaR. SinghR.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021).Acta Pharm. Sin. B20221273006302710.1016/j.apsb.2022.03.021 35865090
    [Google Scholar]
  44. BrundinP.M.A. LandgrenB.M. FjällströmP. ShamekhM.M. GustafssonJ.Å. JohanssonA.F. NalvarteI. Expression of sex hormone receptor and immune response genes in peripheral blood mononuclear cells during the menstrual cycle.Front. Endocrinol. (Lausanne)20211272181310.3389/fendo.2021.721813 34630328
    [Google Scholar]
  45. Barba-MorenoL. Alfaro-MagallanesV.M. de JongeX.A.K.J. DíazA.E. CupeiroR. PeinadoA.B. Hepcidin and interleukin‐6 responses to endurance exercise over the menstrual cycle.Eur. J. Sport Sci.202222221822610.1080/17461391.2020.1853816 33317411
    [Google Scholar]
  46. HughesS.M. LevyC.N. KatzR. LokkenE.M. AnahtarM.N. HallM.B. BradleyF. CastleP.E. CortezV. DoncelG.F. FichorovaR. FidelP.L.Jr FowkeK.R. FrancisS.C. GhoshM. HwangL.Y. JaisM. JespersV. JoagV. KaulR. KyongoJ. LaheyT. LiH. MakindeJ. McKinnonL.R. MoscickiA.B. NovakR.M. PatelM.V. SriprasertI. ThurmanA.R. YegorovS. MugoN.R. RoxbyA.C. MicksE. HladikF. Abdool KarimS.S. AbouM. AndersonS.M. AndreasenA. AoT.T. ArcherD.F. ArienK.K. ArnoldK.B. AsinS. BadenS. BagayaB.S. BaisleyK. BarnardE. BartolfA. BernickB.A. BirseK. BoggildA.K. Boily-LaroucheG. BoksaL.A. BowmanB.A. BowmanF.P. BrolidenK. BurgenerA.D. BuyzeJ. ByrneE.H. ChandraN. ChapmanS. ChenH.Y. CheruiyotJ. ChessonR.R. CohenK.E. CoolsP. CosgroveC. CoultonG.R. Crowley-NowickP.A. CrucittiT. CunninghamT.D. Cu-UvinS. DawoodH.Y. Delany-MoretlweS. DongK.L. DonovalB.A. DufaultB. DunlapK. DunphyL.J. EdwardsR.P. EngstrandL. EspinosaT. FaheyJ.V. FashemiT. FortenberryJ.D. FreiermuthJ.L. GaliwangoR.M. GhebremichaelM.S. GoodS.V. GoovaertsO. GrahamP.J. HardyL. HasselrotK. HayesR.J. HeroldB.C. HerreraC. HershowR.C. HildesheimA. HillierS. HouY. HuangH. HughesS.M. HwangL.Y. IntroiniA. IsmailN. JacotT. JaisM. JespersV. JoagV. JohnstonC. JonesC. JosephS. KapigaS. KappesJ.C. KimaniJ. KimaniM. KimbleT. KiwanukaN. KowatschM. KwatamporaJ. KwonD.S. LajoieJ. LandayA. LauffenburgerD.A. LehmanD.A. LeslieA. LiebenbergL.J. LiebermanJ.A. LounevV. MaY. MabhulaA. MabukaJ. MaganjaK. MarrazzoJ. MassonL. MayerK.H. McCorristerS. MentenJ. MesquitaP.M.M. MichielsJ. MirkinS. MoodleyA. MpendoJ. MukuraL.R. MwauraM. NdayisabaG. Ndung’uT. NjokiJ. Noel-RomasL. NyangaB. OchsenbauerC. Odem-DavisK. OlsonG.S. OmolloK. OrrD.P. OverbaughJ. OyugiJ. PadavattanN. PakrashiT. PandeyU. PassmoreJ-A.S. PustilnikT. RabeL. Richardson-HarmanN. RollenhagenC. RomasL. RossollR.M. SchwartzJ.L. ScottM.E. SeifertM. ShahA. ShahabiK. ShattockR.J. ShenZ. ShiB. SibekoS. SongY. SpearG. StarkmanB.S. StricklerH.D. SumerelJ.L. TannichE. TheallK.P. TjernlundA. van de WijgertJ. Van Der PolB. VanhamG. WalkerB.D. WalkerJ.L. Watson-JonesD. WeferH. WestmacottG.R. WiraC.R. WrightP.F. YounesN. YousefiehN. Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle: a systematic review and meta-analysis of individual patient data.BMC Med.202220135310.1186/s12916‑022‑02532‑9 36195867
    [Google Scholar]
  47. YangT. ZhaoJ. LiuF. LiY. Lipid metabolism and endometrial receptivity.Hum. Reprod. Update202228685888910.1093/humupd/dmac026 35639910
    [Google Scholar]
  48. MikhailovaV. GrebenkinaP. KhokhlovaE. DavydovaA. SalloumZ. TyshchukE. ZagainovaV. MarkovaK. KoganI. SelkovS. SokolovD. Pro- and anti-inflammatory cytokines in the context of NK cell–trophoblast interactions.Int. J. Mol. Sci.2022234238710.3390/ijms23042387 35216502
    [Google Scholar]
  49. XiaT. ZhangM. LeiW. YangR. FuS. FanZ. YangY. ZhangT. Advances in the role of STAT3 in macrophage polarization.Front. Immunol.202314116071910.3389/fimmu.2023.1160719 37081874
    [Google Scholar]
  50. ErnstM. IngleseM. WaringP. CampbellI.K. BaoS. ClayF.J. AlexanderW.S. WicksI.P. TarlintonD.M. NovakU. HeathJ.K. DunnA.R. Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation.J. Exp. Med.2001194218920410.1084/jem.194.2.189 11457894
    [Google Scholar]
  51. HiraokaT. HirotaY. FukuiY. GebrilM. KakuT. AikawaS. HirataT. AkaedaS. MatsuoM. HaraguchiH. Saito-KanataniM. Shimizu-HirotaR. TakedaN. YoshinoO. FujiiT. OsugaY. Differential roles of uterine epithelial and stromal STAT3 coordinate uterine receptivity and embryo attachment.Sci. Rep.20201011552310.1038/s41598‑020‑72640‑0 32968170
    [Google Scholar]
  52. YuT. LinS. XuR. DuT.X. LiY. GaoH. DiaoH.L. ZhangX.H. Cyclophilin A plays an important role in embryo implantation through activating Stat3.Reproduction2020160334335110.1530/REP‑20‑0187 32580158
    [Google Scholar]
  53. FangY. FengX. XueN. CaoY. ZhouP. WeiZ. STAT3 signaling pathway is involved in the pathogenesis of miscarriage.Placenta2020101303810.1016/j.placenta.2020.08.021 32916476
    [Google Scholar]
  54. ZhangX. ChenY. WangX. ZhangZ. WangJ. ShenY. HuY. WuX. NINJ1 triggers extravillous trophoblast cell dysfunction through blocking the STAT3 signaling pathway.Genes Genomics202244111385139710.1007/s13258‑022‑01313‑1 36166142
    [Google Scholar]
  55. CaoL. LuoS. OuR. Influence of kidney-and-spleen-strengthening herbs on endometrial receptivity of kidney deficiency model rats.Zhonghua Zhongyiyao Zazhi2011260510571061
    [Google Scholar]
  56. JavidanM. ChangaeiM. Ramezani TehraniF. MosaffaN. NoroozzadehM. HosseinzadehR. RajaeiS. Altered expression of leukemia inhibitory factor (LIF), LIFR, gp130, and IL11 in the embryo implantation site of rat model with prenatal androgen-induced polycystic ovary syndrome.Biochem. Biophys. Res. Commun.2022605243010.1016/j.bbrc.2022.03.053 35306361
    [Google Scholar]
  57. LiQ. ChenY. AdeniranS.O. QiuZ. ZhaoQ. ZhengP. LIF regulates the expression of miR-27a-3p and HOXA10 in bovine endometrial epithelial cells via STAT3 pathway.Theriogenology202321010110910.1016/j.theriogenology.2023.07.013 37490795
    [Google Scholar]
  58. KumariA. SilakariO. SinghR.K. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications.Biomed. Pharmacother.201810366267910.1016/j.biopha.2018.04.046
    [Google Scholar]
  59. BhurkeA.S. BagchiI.C. BagchiM.K. Progesterone‐regulated endometrial factors controlling implantation.Am. J. Reprod. Immunol.201675323724510.1111/aji.12473 26804062
    [Google Scholar]
  60. JalaliB.M. LikszoP. LukasikK. STAT3 in porcine endometrium during early pregnancy induces changes in extracellular matrix components and promotes angiogenesis.Biol. Reprod.202210761503151610.1093/biolre/ioac163 35977090
    [Google Scholar]
  61. CuiL. XuF. XuC. DingY. WangS. DuM. Circadian gene Rev-erbα influenced by sleep conduces to pregnancy by promoting endometrial decidualization via IL-6-PR-C/EBPβ axis.J. Biomed. Sci.202229110110.1186/s12929‑022‑00884‑1 36419076
    [Google Scholar]
  62. LiY. ZhangD. XuL. DongL. ZhengJ. LinY. HuangJ. ZhangY. TaoY. ZangX. LiD. DuM. Cell–cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models.Cell. Mol. Immunol.2019161290892010.1038/s41423‑019‑0204‑6 30778166
    [Google Scholar]
  63. GreenE.S. MoldenhauerL.M. GroomeH.M. SharkeyD.J. ChinP.Y. CareA.S. RobkerR.L. McCollS.R. RobertsonS.A. Regulatory T cells are paramount effectors in progesterone regulation of embryo implantation and fetal growth.JCI Insight2023811e16299510.1172/jci.insight.162995 37191999
    [Google Scholar]
  64. WangW. SungN. Gilman-SachsA. Kwak-KimJ. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells.Front. Immunol.202011202510.3389/fimmu.2020.02025 32973809
    [Google Scholar]
  65. HuangS. XiaL. XiaY. HuangH. DongL. Icaritin attenuates recurrent spontaneous abortion in mice by modulating Treg/Th17 imbalance via TGF-β/SMAD signaling pathway.Biochim. Biophys. Acta Mol. Cell Res.20241871111957410.1016/j.bbamcr.2023.119574 37689142
    [Google Scholar]
  66. PatnaikS.S. KotipalliR. JeraldM.K. MuralidharanK. Combination treatment of recombinant growth differentiation factor-9 and Cetrorelix improves gestational origin of the polycystic ovarian syndrome in female rats.Life Sci.202332112163810.1016/j.lfs.2023.121638 37001808
    [Google Scholar]
  67. AliR. Ahmed KhanT. GulH. RehmanR. An interplay of Progesterone, Leukemia Inhibitor Factor and Interleukin-6 in the window of implantation; Impact on fertility.Cytokine202317015633210.1016/j.cyto.2023.156332 37586287
    [Google Scholar]
  68. NakamuraH. KimuraT. An in vivo screening model for investigation of pathophysiology of human implantation failure.Biomolecules20221317910.3390/biom13010079 36671464
    [Google Scholar]
  69. WangX. HanC. YangD. ZhouJ. DongH. WeiZ. XuS. XuC. ZhangY. SunY. NiB. GuoS. ZhangJ. ZhaoT. ChenX. LuoJ. WuY. TianY. STAT3 and SOX-5 induce BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells.Commun. Biol.2024711010.1038/s42003‑023‑05735‑9 38172644
    [Google Scholar]
  70. von EssenM.R. SøndergaardH.B. PetersenE.R.S. SellebjergF. IL-6, IL-12, and IL-23 STAT-pathway genetic risk and responsiveness of lymphocytes in patients with multiple sclerosis.Cells20198328510.3390/cells8030285 30917537
    [Google Scholar]
  71. DamascenoL.E.A. PradoD.S. VerasF.P. FonsecaM.M. Toller-KawahisaJ.E. RosaM.H. PúblioG.A. MartinsT.V. RamalhoF.S. WaismanA. CunhaF.Q. CunhaT.M. Alves-FilhoJ.C. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation.J. Exp. Med.202021710e2019061310.1084/jem.20190613 32697823
    [Google Scholar]
  72. HouY. JiY. WangX. WangS. DingS. GuangzhongZ. Application of Yin-Yang balance theory in cells regulation and immune response of psoriasis.Glob. Trad. Chin. Medic.2022150711801184
    [Google Scholar]
  73. ZhuL. TanY. SheY. YuJ. YanQ. Discussion on the Effects of Macrophage Polarization on Diabetic Kidney Disease Based on TCM Yin-yang Theory.Chinese. J. Inform. Tradit. Chin. Med.20243110192310.19879/j.cnki.1005‑5304.202403054
    [Google Scholar]
  74. WuH. DongL. LiangF. Exploration of professor ZHENG huifang’s tonifying kidney and invigorating spleen in improving oocyte quality based on IVF-ET technique shandong.J. Tradit. Chin. Med.2022410213313710.16295/j.cnki.0257‑358x.2022.02.002
    [Google Scholar]
  75. YaoC. YaoD. On the Changes-related Principles in Li Gao’s Theory of Traditional Chinese Medicine.Studies Zhouyi.2021048591
    [Google Scholar]
  76. RuanF. ZhouH. The effect of bushen zhuyun decoction on Treg, Th17 and their related factors in luteal phase defect infertility rats.J. Nanjing Uni. Tradit. Chin. Med.20244002212810.14148/j.issn.1672‑0482.2024.0129
    [Google Scholar]
  77. ZhouH. ZHOU huifang’s experience of effective prescriptions-bushen zhuyun prescription jiangsu.J. Tradit. Chin. Med.202254041210.19844/j.cnki.1672‑397X.2022.04.001
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073351630241128182125
Loading
/content/journals/cchts/10.2174/0113862073351630241128182125
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test