Skip to content
2000
Volume 28, Issue 15
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

This study aimed to identify marine-derived protease inhibitors with potential applications in immunogenicity-targeted therapies.

Methods

Starting with a pharmacophore model based on the GRL-09510 complex (PDB ID: 5v4y), we isolated three critical features (RAA) that facilitated the selection of 192 candidates from an initial pool of 18,547 compounds.

Results

Subsequent docking analyses, validated with a strong ROC value of 0.74, revealed four high-affinity compounds: Echoside C (CMNPD22461), Anguibactin (CMNPD3610), Hansforester K (CMNPD30598), and Polyandocarpamide A (CMNPD4564), with binding scores of -7.773, -7.770, -7.690, and -7.236 kcal/mol, respectively—each exceeding the reference compound's binding efficacy. Further assessments of drug-likeness (ADME) and toxicity profiles produced favorable results and predicted biological activity from the PASS program supported their potential as potent protease inhibitors. Density Functional Theory (DFT) analysis and molecular dynamics simulations confirmed the stability of these compounds when bound to the protease’s active site, with configurations similar to the GRL-09510 complex.

Conclusion

These findings suggest that the identified marine-derived compounds hold significant promise as effective protease inhibitors, offering new opportunities for immunotherapy and advancements in drug development.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073344783241205075752
2025-05-16
2025-12-30
Loading full text...

Full text loading...

References

  1. Human Immunodeficiency Virus (HIV)Transfus. Med. Hemother.201643320322210.1159/000445852 27403093
    [Google Scholar]
  2. GünthardH.F. SaagM.S. BensonC.A. del RioC. EronJ.J. GallantJ.E. HoyJ.F. MugaveroM.J. SaxP.E. ThompsonM.A. GandhiR.T. LandovitzR.J. SmithD.M. JacobsenD.M. VolberdingP.A. Antiretroviral drugs for treatment and prevention of HIV infection in adults.JAMA2016316219121010.1001/jama.2016.8900 27404187
    [Google Scholar]
  3. Humans IWG on the E of CR to HUMAN IMMUNODEFICIENCY VIRUS-1.Biological Agents.International Agency for Research on Cancer2012
    [Google Scholar]
  4. RoesmannF. MüllerL. KlaassenK. HeßS. WideraM. Interferon-regulated expression of cellular splicing factors modulates multiple levels of HIV-1 gene expression and replication.Viruses202416693810.3390/v16060938 38932230
    [Google Scholar]
  5. FreedE.O. HIV-1 assembly, release and maturation.Nat. Rev. Microbiol.201513848449610.1038/nrmicro3490 26119571
    [Google Scholar]
  6. GhoshA.K. OsswaldH.L. PratoG. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS.J. Med. Chem.201659115172520810.1021/acs.jmedchem.5b01697 26799988
    [Google Scholar]
  7. GhoshA.K. BilcerG. SchiltzG. Syntheses of FDA approved HIV protease inhibitors.Synthesis20012001152203222910.1055/s‑2001‑18434 30393404
    [Google Scholar]
  8. ŽigrayováD. MikušováV. MikušP. Advances in antiviral delivery systems and chitosan-based polymeric and nanoparticulate antivirals and antiviral carriers.Viruses202315364710.3390/v15030647 36992356
    [Google Scholar]
  9. BluntJ.W. CoppB.R. HuW.P. MunroM.H.G. NorthcoteP.T. PrinsepM.R. Marine natural products.Nat. Prod. Rep.200926217024410.1039/b805113p 19177222
    [Google Scholar]
  10. FaulknerD.J. Marine natural products (1999).Nat. Prod. Rep.200118114910.1039/b006897g 11245399
    [Google Scholar]
  11. El-DemerdashA. Al-KarmalawyA.A. Abdel-AzizT.M. ElhadyS.S. DarwishK.M. HassanA.H.E. Investigating the structure–activity relationship of marine natural polyketides as promising SARS-CoV-2 main protease inhibitors.RSC Advances20211150313393136310.1039/D1RA05817G 35496831
    [Google Scholar]
  12. OuassafM. BourougaaL. Al-MijalliS.H. AbdallahE.M. BhatA.R. A KawsarS.M. Marine-derived compounds as potential inhibitors of Hsp90 for anticancer and antimicrobial drug development: A comprehensive in silico study.Molecules20232824807410.3390/molecules28248074 38138564
    [Google Scholar]
  13. LipinskiC.A. Lead and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  14. AmanoM. Miguel Salcedo-GómezP. YedidiR.S. DelinoN.S. NakataH. Venkateswara RaoK. GhoshA.K. MitsuyaH. GRL-09510, a unique P2-crown-tetrahydrofuranylurethane containing HIV-1 protease inhibitor, maintains its favorable antiviral activity against highly-drug-resistant HIV-1 variants in vitro .Sci. Rep.2017711223510.1038/s41598‑017‑12052‑9 28947797
    [Google Scholar]
  15. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b00864 26584231
    [Google Scholar]
  16. OuassafM. BelaidiS. ShtaiwiA. ChtitaS. Quantitative Structure Activity Relationship (QSAR) investigations and molecular docking analysis of plasmodium protein farnesyltransferase inhibitors as potent antimalarial agents.Jordan J. Pharm. Sci.202215331534010.35516/jjps.v15i3.407
    [Google Scholar]
  17. OuassafM. QaisF.A. BelaidiS. BakhouchM. MohamedA.S. ChtitaS. Combined pharmacophore modeling, 3D-QSAR, molecular docking and molecular dynamics study on indolyl-aryl-sulfone derivatives as new HIV1 inhibitors.Acta Chim. Slov.202269248950610.17344/acsi.2022.7427 35861093
    [Google Scholar]
  18. PoloT.C.F. MiotH.A. Use of ROC curves in clinical and experimental studies.J. Vasc. Bras.202019e20200186
    [Google Scholar]
  19. AgwambaE.C. UdoikonoA.D. LouisH. UdohE.U. BenjaminI. IgbalaghA.T. EdetH.O. EjioforE.U. UshakaU.B. Synthesis, characterization, DFT studies, and molecular modeling of azo dye derivatives as potential candidate for trypanosomiasis treatment.Chem. Phy. Impact2022410007610.1016/j.chphi.2022.100076
    [Google Scholar]
  20. AnsariW.A. RabS.O. SaquibM. SarfrazA. HussainM.K. AkhtarM.S. AhmadI. KhanM.F. Pentafuhalol-B, a phlorotannin from brown algae, strongly inhibits the PLK-1 overexpression in cancer cells as revealed by computational analysis.Molecules20232815585310.3390/molecules28155853 37570823
    [Google Scholar]
  21. RahmanM.M. IslamM.R. AkashS. MimS.A. RahamanM.S. EmranT.B. AkkolE.K. SharmaR. AlhumaydhiF.A. SweilamS.H. HossainM.E. RayT.K. SultanaS. AhmedM. Sobarzo-SánchezE. WilairatanaP. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective.Front. Cell. Infect. Microbiol.20221292943010.3389/fcimb.2022.929430 36072227
    [Google Scholar]
  22. MahapatraM. MohapatraP. PakeeraiahK. BandaruR.K. AhmadI. MalS. DandelaR. SahooS.K. PatelH. PaidesettyS.K. In-vitro anticancer evaluation of newly designed and characterized tri/tetra-substituted imidazole congeners- maternal embryonic leucine zipper kinase inhibitors: Molecular docking and MD simulation approaches.Int. J. Biol. Macromol.202324912608410.1016/j.ijbiomac.2023.126084 37532192
    [Google Scholar]
  23. GiraseR. AhmadI. PatelH. Bioisosteric modification of Linezolid identified the potential M. tuberculosis protein synthesis inhibitors to overcome the myelosuppression and serotonergic toxicity associated with Linezolid in the treatment of the multi-drug resistance tuberculosis (MDR-TB).J. Biomol. Struct. Dyn.20244242111212610.1080/07391102.2023.2203254 37097976
    [Google Scholar]
  24. VanithaU. ElancheranR. ManikandanV. KabilanS. KrishnasamyK. Design, synthesis, characterization, molecular docking and computational studies of 3-phenyl-2-thioxoimidazolidin-4-one derivatives.J. Mol. Struct.2021124613121210.1016/j.molstruc.2021.131212
    [Google Scholar]
  25. RamalingamA. SambandamS. LouisH. ImojaraA. MathiasG.E. Spectroscopic study, Hirshfeld surface, DFT, in-silico molecular docking and ADMET studies of 2,6-bis(4-chlorophenyl)-3-isopropylpiperidin-4-one (BCIP): A potent antiviral agent.J. Mol. Struct.2023129113591210.1016/j.molstruc.2023.135912
    [Google Scholar]
  26. Jakubiec-KrzesniakK. Rajnisz-MateusiakA. GuspielA. ZiemskaJ. SoleckaJ. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties.Pol. J. Microbiol.201867325927210.21307/pjm‑2018‑048 30451442
    [Google Scholar]
  27. ThomasT.R.A. KavlekarD.P. LokaBharathi, P.A. Marine drugs from sponge-microbe association-a review.Mar. Drugs2010841417146810.3390/md8041417 20479984
    [Google Scholar]
  28. NgamcharungchitC. ChaimusikN. PanbangredW. EuanorasetrJ. IntraB. Bioactive metabolites from terrestrial and marine actinomycetes.Molecules20232815591510.3390/molecules28155915 37570885
    [Google Scholar]
  29. JohnsonT.W. DressK.R. EdwardsM. Using the golden triangle to optimize clearance and oral absorption.Bioorg. Med. Chem. Lett.200919195560556410.1016/j.bmcl.2009.08.045 19720530
    [Google Scholar]
  30. JiaC.Y. LiJ.Y. HaoG.F. YangG.F. A drug-likeness toolbox facilitates ADMET study in drug discovery.Drug Discov. Today202025124825810.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  31. PillaiO. DhanikulaA.B. PanchagnulaR. Drug delivery: An odyssey of 100 years.Curr. Opin. Chem. Biol.20015443944610.1016/S1367‑5931(00)00226‑X 11470608
    [Google Scholar]
  32. LagorceD. OliveiraN. MitevaM.A. VilloutreixB.O. Pan-assay interference compounds (PAINS) that may not be too painful for chemical biology projects.Drug Discov. Today20172281131113310.1016/j.drudis.2017.05.017 28676405
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073344783241205075752
Loading
/content/journals/cchts/10.2174/0113862073344783241205075752
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test