Skip to content
2000
Volume 28, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aims

To investigate the mechanisms through which Qianlong Shutong Formula (QLSTF) exerts its effects on the management of benign prostatic hyperplasia (BPH).

BPH is a prevalent condition among older men and poses significant management challenges due to the limited effectiveness and potential side effects associated with current treatment options. QLSTF, a traditional Chinese medicine, has been utilized in the treatment of BPH; however, its mechanism of action remains inadequately understood.

Objective

This study aimed to identify potential therapeutic targets of QLSTF for the management of BPH through the application of network pharmacology and subsequent experimental validation.

Methods

QLSTF compounds were identified utilizing liquid chromatography-mass spectrometry (LC-MS). Potential targets of QLSTF, as well as BPH-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Lastly, and experiments were conducted to further verify the findings.

Results

A total of 52 bioactive ingredients of QLSTF and 760 QLSTF-BPH-related targets were screened. Bioinformatics analysis revealed that Afzelin, Ononin, Glycitin, Emodin and Erythritol may be potential candidate agents. AKT1, SRC, STAT3, GRB2, HRAS, MAPK3, PIK3CA, PIK3R1, HSP90AA1, and EP300 could become potential therapeutic targets. PI3K-AKT signaling pathway might play an important role in QLSTF against BPH. Moreover, molecular docking suggested that Afzelin, Ononin, Glycitin, Emodin, and Erythritol combined well with AKT1, SRC, STAT3, HRAS, MAPK3, PIK3CA, and PIK3R1, respectively. and experiments showed that QLSTF could inhibit the proliferation of cells, as well as the PI3K-Akt signaling pathway, which further confirmed the prediction by network pharmacology strategy and molecular docking.

Conclusions

QLSTF may exert its therapeutic effects on BPH by modulating the PI3K/AKT signaling pathway and inhibiting glandular hyperplasia. This study offers valuable insights into the therapeutic targets of QLSTF in the management of BPH.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073336172241220182220
2025-01-02
2025-12-20
Loading full text...

Full text loading...

References

  1. AnJ. SongY. KimS. KongH. KimK. Alteration of gut microbes in benign prostatic hyperplasia model and finasteride treatment model.Int. J. Mol. Sci.2023246590410.3390/ijms24065904
    [Google Scholar]
  2. KaplanS.A. Benign prostatic hyperplasia.J. Urol.2023210354855010.1097/JU.0000000000003580 37317776
    [Google Scholar]
  3. BerryS.J. CoffeyD.S. WalshP.C. EwingL.L. The development of human benign prostatic hyperplasia with age.J. Urol.1984132347447910.1016/S0022‑5347(17)49698‑4 6206240
    [Google Scholar]
  4. LaunerB.M. McVaryK.T. RickeW.A. LloydG.L. The rising worldwide impact of benign prostatic hyperplasia.BJU Int.2021127672272810.1111/bju.15286 33124118
    [Google Scholar]
  5. DevlinC.M. SimmsM.S. MaitlandN.J. Benign prostatic hyperplasia – What do we know?BJU Int.2021127438939910.1111/bju.15229 32893964
    [Google Scholar]
  6. ZhangW. DingZ. PengY. WangH. SunY. KeH. SuD. WangQ. XuK. LUTS/BPH increases the risk of depressive symptoms among elderly adults: A 5-year longitudinal evidence from CHARLS.J. Affect. Disord.202436721021810.1016/j.jad.2024.08.205 39233239
    [Google Scholar]
  7. LiuD. LiC. LiY. ZhouL. LiJ. WangY. WanX. ZhouL. WangL. Benign prostatic hyperplasia burden comparison between China and United States based on the global burden of disease study 2019.World J. Urol.202341123629363410.1007/s00345‑023‑04658‑8 37831157
    [Google Scholar]
  8. BengtsenM.B. Heide-JørgensenU. BorreM. KnudsenJ.S. NørgaardM. Acute urinary retention in men: 21‐year trends in incidence, subsequent benign prostatic hyperplasia‐related treatment and mortality: A Danish population‐based cohort study.Prostate2023831879610.1002/pros.24440 36128607
    [Google Scholar]
  9. BarryM.J. RoehrbornC.G. Extracts from “Clinical Evidence”: Benign prostatic hyperplasia.BMJ200132373201042104610.1136/bmj.323.7320.1042 11691764
    [Google Scholar]
  10. ZangL. TianF. YaoY. ChenY. ShenY. HanM. MengZ. FanS. ZhangX. CaiT. GaoQ. ZhangY. LuJ. Qianliexin capsule exerts anti‐inflammatory activity in chronic non‐bacterial prostatitis and benign prostatic hyperplasia via NF‐κB and inflammasome.J. Cell. Mol. Med.202125125753576810.1111/jcmm.16599 33982874
    [Google Scholar]
  11. ZhangZ. HuangS. ShangC. LinZ. YangQ. HuF. ZhuM. Exploring the efficacy of the traditional chinese medicine compound formulas qianlong shutong formula in the treatment of benign prostatic hyperplasia.J. Mod. Pharmacol. Pathol.20242110.53964/jmpp.2024001
    [Google Scholar]
  12. PangB. ZhuY. LuL. GuF. ChenH. The applications and features of liquid chromatography‐mass spectrometry in the analysis of traditional chinese medicine.Evid. Based Complement. Alternat. Med.201620161383727010.1155/2016/3837270 27956918
    [Google Scholar]
  13. BoezioB. AudouzeK. DucrotP. TaboureauO. Network-based approaches in pharmacology.Mol. Inform.2017361010.1002/minf.201700048
    [Google Scholar]
  14. TangY.P. XuD.Q. YueS.J. ChenY.Y. FuR.J. BaiX. Modern research thoughts and methods on bio-active components of TCM formulae.Chin. J. Nat. Med.202220748149310.1016/S1875‑5364(22)60206‑1 35907647
    [Google Scholar]
  15. YuanZ. PanY. LengT. ChuY. ZhangH. MaJ. MaX. Progress and prospects of research ideas and methods in the network pharmacology of traditional chinese medicine.J. Pharm. Pharm. Sci.20222521822610.18433/jpps32911 35760072
    [Google Scholar]
  16. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  17. XueL.C. DobbsD. BonvinA.M.J.J. HonavarV. Computational prediction of protein interfaces: A review of data driven methods.FEBS Lett.2015589233516352610.1016/j.febslet.2015.10.003 26460190
    [Google Scholar]
  18. FerreiraL.G. Dos SantosR.N. OlivaG. AndricopuloA.D. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384
    [Google Scholar]
  19. LiuJ. LiuJ. TongX. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis.Drug Des. Devel. Ther.2021153255327610.2147/DDDT.S319786
    [Google Scholar]
  20. XueR. FangZ. ZhangM. YiZ. WenC. ShiT. TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis.Nucleic Acids Res.201241D1D1089D109510.1093/nar/gks1100 23203875
    [Google Scholar]
  21. NikolinB. ImamovićB. Medanhodžić-VukS. SoberM. High performance liquid chromatography in pharmaceutical analyses.Bosn. J. Basic Med. Sci.2004425910.17305/bjbms.2004.3405 15629016
    [Google Scholar]
  22. WishartD.S. GuoA. OlerE. WangF. AnjumA. PetersH. DizonR. SayeedaZ. TianS. LeeB.L. BerjanskiiM. MahR. YamamotoM. JovelJ. Torres-CalzadaC. Hiebert-GiesbrechtM. LuiV.W. VarshaviD. VarshaviD. AllenD. ArndtD. KhetarpalN. SivakumaranA. HarfordK. SanfordS. YeeK. CaoX. BudinskiZ. LiigandJ. ZhangL. ZhengJ. MandalR. KaruN. DambrovaM. SchiöthH.B. GreinerR. GautamV. HMDB 5.0: The human metabolome database for 2022.Nucleic Acids Res.202250D1D622D63110.1093/nar/gkab1062 34986597
    [Google Scholar]
  23. CotterD. MaerA. GudaC. SaundersB. SubramaniamS. LMPD: LIPID MAPS proteome database.Nucleic Acids Res.20063490001D507D51010.1093/nar/gkj122 16381922
    [Google Scholar]
  24. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  25. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.201774271710.1038/srep42717
    [Google Scholar]
  26. HähnkeV.D. KimS. BoltonE.E. PubChem chemical structure standardization.J. Cheminform.20181013610.1186/s13321‑018‑0293‑8
    [Google Scholar]
  27. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  28. DavisA.P. WiegersT.C. JohnsonR.J. SciakyD. WiegersJ. MattinglyC.J. Comparative toxicogenomics database (CTD): Update 2023.Nucleic Acids Res.202351D1D1257D126210.1093/nar/gkac833 36169237
    [Google Scholar]
  29. HamoshA. AmbergerJ.S. BocchiniC. ScottA.F. RasmussenS.A. Online mendelian inheritance in man (OMIM ®): Victor MCKUSICK 's magnum opus.Am. J. Med. Genet. A.2021185113259326510.1002/ajmg.a.62407 34169650
    [Google Scholar]
  30. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.201948D1gkz102110.1093/nar/gkz1021 31680165
    [Google Scholar]
  31. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑293
    [Google Scholar]
  32. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  33. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  34. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. Lin, CY cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  35. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  36. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.211 19131956
    [Google Scholar]
  37. GustavssonE.K. ZhangD. ReynoldsR.H. Garcia-RuizS. RytenM. ggtranscript: An R package for the visualization and interpretation of transcript isoforms using ggplot2.Bioinformatics202238153844384610.1093/bioinformatics/btac409 35751589
    [Google Scholar]
  38. KanehisaM. SatoY. FurumichiM. MorishimaK. TanabeM. New approach for understanding genome variations in KEGG.Nucleic Acids Res.201947D1D590D59510.1093/nar/gky962 30321428
    [Google Scholar]
  39. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  40. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  41. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein Data Bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_26 28573592
    [Google Scholar]
  42. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChaoH. ChenL. CraigP.A. CrichlowG.V. DalenbergK. DuarteJ.M. DuttaS. FayaziM. FengZ. FlattJ.W. GanesanS. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. HenryJ. HudsonB.P. KhokhriakovI. LawsonC.L. LiangY. LoweR. PeisachE. PersikovaI. PiehlD.W. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. VallatB. VoigtM. WebbB. WestbrookJ.D. WhetstoneS. YoungJ.Y. ZalevskyA. ZardeckiC. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac1077 36420884
    [Google Scholar]
  43. SyriopoulouA. MarkopoulosI. TzakosA.G. MavromoustakosT. Ligand–receptor interactions and drug design.Methods Mol. Biol.202122668910410.1007/978‑1‑0716‑1209‑5_5 33759122
    [Google Scholar]
  44. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331
    [Google Scholar]
  45. GrassoG. Di GregorioA. MavkovB. PigaD. LabateG.F.D.U. DananiA. DeriuM.A. Fragmented blind docking: A novel protein–ligand binding prediction protocol.J. Biomol. Struct. Dyn.20224024134721348110.1080/07391102.2021.1988709 34641761
    [Google Scholar]
  46. GoodsellD.S. MorrisG.M. OlsonA.J. Automated docking of flexible ligands: Applications of autodock.J. Mol. Recognit.1996911510.1002/(SICI)1099‑1352(199601)9:1<1:AID‑JMR241>3.0.CO;2‑6 8723313
    [Google Scholar]
  47. Bitencourt-FerreiraG. PintroV.O. de AzevedoW.F. Jr Docking with AutoDock4.Methods Mol. Biol.2019205312514810.1007/978‑1‑4939‑9752‑7_9 31452103
    [Google Scholar]
  48. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  49. RosignoliS. PaiardiniA. Boosting the full potential of PyMOL with structural biology plugins.Biomolecules20221212176410.3390/biom12121764 36551192
    [Google Scholar]
  50. SalentinS. SchreiberS. HauptV.J. AdasmeM.F. SchroederM. PLIP: fully automated protein–ligand interaction profiler.Nucleic Acids Res.201543W1W443W44710.1093/nar/gkv315 25873628
    [Google Scholar]
  51. AdasmeM.F. LinnemannK.L. BolzS.N. KaiserF. SalentinS. HauptV.J. SchroederM. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530W53410.1093/nar/gkab294 33950214
    [Google Scholar]
  52. ChenT. LiuY.X. HuangL. ImageG.P. An easy-to-use data visualization web server for scientific researchers.iMeta202211e510.1002/imt2.5
    [Google Scholar]
  53. ChenT. LiuY.X. ChenT. ImageGP 2 for enhanced data visualization and reproducible analysis in biomedical research.iMeta202435e23910.1002/imt2.239
    [Google Scholar]
  54. HussainiH.M. SeoB. RichA.M. Immunohistochemistry and immunofluorescence.Methods Mol. Biol.2023258843945010.1007/978‑1‑0716‑2780‑8_26 36418703
    [Google Scholar]
  55. HiranoS. Western blot analysis.Methods Mol. Biol.2012926879710.1007/978‑1‑62703‑002‑1_6 22975958
    [Google Scholar]
  56. JozefczukJ. AdjayeJ. Quantitative real-time PCR-based analysis of gene expression.Methods Enzymol.20115009910910.1016/B978‑0‑12‑385118‑5.00006‑2] 21943894
    [Google Scholar]
  57. SchapiroS.J. EverittJ.I. Preparation of animals for use in the laboratory: Issues and challenges for the institutional animal care and use committee (IACUC).ILAR J.200647437037510.1093/ilar.47.4.370 16963817
    [Google Scholar]
  58. ElsherbiniD.M.A. AlmohaimeedH.M. El-Sherbiny, M Origanum majorana L. Extract attenuated benign prostatic hyperplasia in rat model: Effect on oxidative stress, apoptosis, and proliferation.Antioxidants2022116114910.3390/antiox11061149
    [Google Scholar]
  59. KimH.J. JinB.R. AnH.J. Psoralea corylifolia L. extract ameliorates benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis.J. Ethnopharmacol.202127311384410.1016/j.jep.2021.113844 33485982
    [Google Scholar]
  60. ZhouJ.X. LuoN.F. LiangX.M. LiuJ. The efficacy and safety of intravenous emulsified isoflurane in rats.Anesth. Analg.2006102112913410.1213/01.ane.0000189612.24147.07 16368817
    [Google Scholar]
  61. SchneiderC.A. RasbandW.S. EliceiriK.W. NIH Image to ImageJ: 25 years of image analysis.Nat. Methods20129767167510.1038/nmeth.2089 22930834
    [Google Scholar]
  62. AlvesC.L. Ditzel, HJ Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer.Int. J. Mol. Sci.2023245452210.3390/ijms24054522
    [Google Scholar]
  63. CrowleyL.C. Waterhouse, NJ Detecting cleaved caspase-3 in apoptotic cells by flow cytometry.Cold Spring Harb. Protoc.201620161110.1101/pdb.prot087312
    [Google Scholar]
  64. SpitzA.Z. GavathiotisE. Physiological and pharmacological modulation of BAX.Trends Pharmacol. Sci.202243320622010.1016/j.tips.2021.11.001 34848097
    [Google Scholar]
  65. TsujimotoY. bcl-2: Antidote for cell death.Prog. Mol. Subcell. Biol.199616728610.1007/978‑3‑642‑79850‑4_5 8822793
    [Google Scholar]
  66. NgM. LeslieS.W. BaradhiK.M. Benign prostatic hyperplasia.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  67. LokeshwarS.D. HarperB.T. WebbE. JordanA. DykesT.A. NealD.E.Jr TerrisM.K. KlaassenZ. Epidemiology and treatment modalities for the management of benign prostatic hyperplasia.Transl. Androl. Urol.20198552953910.21037/tau.2019.10.01 31807429
    [Google Scholar]
  68. AaronL. FrancoO.E. HaywardS.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia.Urol. Clin. North Am.201643327928810.1016/j.ucl.2016.04.012 27476121
    [Google Scholar]
  69. VuichoudC. LoughlinK.R. Benign prostatic hyperplasia: Epidemiology, economics and evaluation.Can. J. Urol.201522Suppl. 116 26497338
    [Google Scholar]
  70. LuanX. ZhangL.J. LiX.Q. RahmanK. ZhangH. ChenH.Z. ZhangW.D. Compound-based Chinese medicine formula: From discovery to compatibility mechanism.J. Ethnopharmacol.202025411268710.1016/j.jep.2020.112687 32105748
    [Google Scholar]
  71. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  72. GongG.Y. XiS.Y. LiC.C. TangW.L. FuX.M. HuangY.P. Bushen Tongluo formula ameliorated testosterone propionate-induced benign prostatic hyperplasia in rats.Phytomedicine202312015504810.1016/j.phymed.2023.155048 37651753
    [Google Scholar]
  73. LiuY. ShaoR. SuoT. ZhuJ. LiuE. WangY. MiaoL. GaoX. Traditional Chinese Medicine Danzhi qing’e decoction inhibits inflammation-associated prostatic hyperplasia via inactivation of ERK1/2 signal pathway.J. Ethnopharmacol.202330911635410.1016/j.jep.2023.116354 36906158
    [Google Scholar]
  74. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in traditional chinese medicine: A narrative review.J. Tradit. Chin. Med.202242347948610.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
  75. LiX. LiuZ. LiaoJ. ChenQ. LuX. FanX. Network pharmacology approaches for research of traditional chinese medicines.Chin. J. Nat. Med.202321532333210.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073336172241220182220
Loading
/content/journals/cchts/10.2174/0113862073336172241220182220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test