Skip to content
2000
Volume 28, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Objective

In this study, we aimed to identify novel biomarkers related to Peripheral Neural Invasion (PNI) in head and neck squamous cell carcinoma (HNSCC).

Methods

The PNI-related differentially expressed mRNAs (DE-mRNAs) in HNSCC were identified to construct a PNI-related risk score model. The expression level and ROC curve for Tachykinin Precursor 1 (TAC1) were calculated. Additionally, two kinds of models of PNI were established for investigation, including the Matrigel-PNI model and the Transwell-PNI model. Furthermore, the transcription factor of the TAC1 was predicted and verified by qRT-PCR.

Results

A total of 139 DE-mRNAs were identified in PNI positive and negative groups of HNSCC patients. The risk-score marker model incorporating 20 PNI-related DE-mRNAs was established. The TAC1 was identified as a potential highly expressed PNI marker, which exhibited good performance in predicting PNI events. Patients with higher TAC1 expressions demonstrated significantly shorter survival rates compared to those with lower TAC1 expressions in HNSCC. Besides, the knockdown of TAC1 significantly repressed neural invasion in HNSCC cells according to the Matrigel-PNI model and Transwell-PNI model. Furthermore, KLF15 was predicted and verified as a transcription activator of TAC1 in HNSCC.

Conclusion

This study highlights that the activation of KLF15 transcription of TAC1 promotes PNI in HNSCC cells, which provides guidance regarding the molecular diagnosis of PNI in HNSCC cells.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073331908241002044719
2024-10-14
2025-12-18
Loading full text...

Full text loading...

References

  1. JohnsonD.E. BurtnessB. LeemansC.R. LuiV.W.Y. BaumanJ.E. GrandisJ.R. Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers2020619210.1038/s41572‑020‑00224‑3 33243986
    [Google Scholar]
  2. RomanowskaK. SobeckaA. Rawłuszko-WieczorekA. SuchorskaW. GolusińskiW. Head and neck squamous cell carcinoma: Epigenetic landscape.Diagnostics20201113410.3390/diagnostics11010034
    [Google Scholar]
  3. WangH. ZhaoQ. ZhangY. ZhangQ. ZhengZ. LiuS. LiuZ. MengL. XinY. JiangX. Immunotherapy advances in locally advanced and recurrent/metastatic head and neck squamous cell carcinoma and its relationship with human papillomavirus.Front. Immunol.20211265205410.3389/fimmu.2021.652054 34305889
    [Google Scholar]
  4. JungK. NarwalM. MinS.Y. KeamB. KangH. Squamous cell carcinoma of head and neck: what internists should know.Korean J. Intern. Med.20203551031104410.3904/kjim.2020.078 32663913
    [Google Scholar]
  5. SchmitdL.B. ScanlonC.S. D’SilvaN.J. Perineural invasion in head and neck cancer.J. Dent. Res.201897774275010.1177/0022034518756297 29443582
    [Google Scholar]
  6. BakstR.L. GlastonburyC.M. ParvathaneniU. KatabiN. HuK.S. YomS.S. Perineural invasion and perineural tumor spread in head and neck cancer.Int. J. Radiat. Oncol. Biol. Phys.201910351109112410.1016/j.ijrobp.2018.12.009 30562546
    [Google Scholar]
  7. ZarebaP. FlavinR. IsikbayM. RiderJ.R. GerkeT.A. FinnS. PetterssonA. GiunchiF. UngerR.H. TinianowA.M. AnderssonS.O. AndrénO. FallK. FiorentinoM. MucciL.A. Perineural invasion and risk of lethal prostate cancer.Cancer Epidemiol. Biomarkers Prev.201726571972610.1158/1055‑9965.EPI‑16‑0237 28062398
    [Google Scholar]
  8. LiuQ. MaZ. CaoQ. ZhaoH. GuoY. LiuT. Perineural invasion-associated biomarkers for tumor development.Biomed. Pharmacother.2022155113691
    [Google Scholar]
  9. BurA.M. LinA. WeinsteinG.S. Adjuvant radiotherapy for early head and neck squamous cell carcinoma with perineural invasion: A systematic review.Head Neck201638S1Suppl. 1E2350E235710.1002/hed.24295 26613965
    [Google Scholar]
  10. HansC. Model uncertainty and variable selection in Bayesian lasso regression.Stat. Comput.201020222122910.1007/s11222‑009‑9160‑9
    [Google Scholar]
  11. ZhanZ. LinK. WangT. Construction of oxidative phosphorylation-related prognostic risk score model in uveal melanoma.BMC Ophthalmol.202424120410.1186/s12886‑024‑03441‑6 38698303
    [Google Scholar]
  12. HuyettP. GilbertM. LiuL. FerrisR.L. KimS. A model for perineural invasion in head and neck squamous cell carcinoma.J. Vis. Exp.20172017119119 28117782
    [Google Scholar]
  13. YuH. MiaoW. JiE. HuangS. JinS. ZhuX. LiuM.Z. SunY.G. XuF. YuX. Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions.Neuron2022110610511067.e710.1016/j.neuron.2021.12.022 35045339
    [Google Scholar]
  14. GyslerS.M. DrapkinR. Tumor innervation: peripheral nerves take control of the tumor microenvironment.J. Clin. Invest.202113111e14727610.1172/JCI147276 34060481
    [Google Scholar]
  15. SalvoE. CampanaW.M. ScheffN.N. NguyenT.H. JeongS. WallI. WuA.K. ZhangS. KimH. BhattacharyaA. JanalM.N. LiuC. AlbertsonD.G. SchmidtB.L. DolanJ.C. SchmidtR.E. BoadaM.D. YeY. Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion.Pain2020161112592260210.1097/j.pain.0000000000001986 32658150
    [Google Scholar]
  16. ArthursJ.W. PauliJ.L. PalmiterR.D. Activation of Parabrachial Tachykinin 1 Neurons Counteracts Some Behaviors Mediated by Parabrachial Calcitonin Gene-related Peptide Neurons.Neuroscience202351710511610.1016/j.neuroscience.2023.03.003 36898496
    [Google Scholar]
  17. RousseauJ.P. FurduiA. Silveira ScarpelliniC. HornerR.L. MontandonG. Medullary tachykinin precursor 1 neurons promote rhythmic breathing.eLife202312e8557510.7554/eLife.85575 37458576
    [Google Scholar]
  18. SaidiM. BeaudryF. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1−/− mouse spinal cords reveals significant lower concentration of opioid peptides.Neuropeptides201552798710.1016/j.npep.2015.05.005 26072188
    [Google Scholar]
  19. SiddiquiY.D. NieX. WangS. AbbasiY. ParkL. FanX. Thumbigere-MathV. ChungM.K. Substance P aggravates ligature-induced periodontitis in mice.Front. Immunol.202314109901710.3389/fimmu.2023.1099017 37122730
    [Google Scholar]
  20. SerraG.P. GuillauminA. VlcekB. Delgado-ZabalzaL. RicciA. RubinoE. DumasS. BaufretonJ. GeorgesF. Wallén-MackenzieÅ. A role for the subthalamic nucleus in aversive learning.Cell Rep.2023421111332810.1016/j.celrep.2023.113328 37925641
    [Google Scholar]
  21. MistrovaE. KruzliakP. Chottova DvorakovaM. Role of substance P in the cardiovascular system.Neuropeptides201658415110.1016/j.npep.2015.12.005 26706184
    [Google Scholar]
  22. KiyoshiM. MasatoM. AtsushiI. DaikiM. YukiM. ShioriE. The neuropeptide genes SST, TAC1, HCRT, NPY, and GAL are powerful epigenetic biomarkers in head and neck cancer: a site-specific analysis.Clin. Epigenet20181052
    [Google Scholar]
  23. HaldarS.M. LuY. JeyarajD. KawanamiD. CuiY. EapenS.J. HaoC. LiY. DoughmanY.Q. WatanabeM. ShimizuK. KuivaniemiH. SadoshimaJ. MarguliesK.B. CappolaT.P. JainM.K. Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation.Sci. Transl. Med.201022626ra2610.1126/scitranslmed.3000502 20375365
    [Google Scholar]
  24. RaneM.J. ZhaoY. CaiL. Krϋppel-like factors (KLFs) in renal physiology and disease.EBioMedicine20194074375010.1016/j.ebiom.2019.01.021 30662001
    [Google Scholar]
  25. ZhouJ. TanT. TianY. ZhengB. James OuJ-H. HuangE.J. YenT.S.B. Krüppel-like factor 15 activates hepatitis B virus gene expression and replication.Hepatology201154110912110.1002/hep.24362 21503941
    [Google Scholar]
  26. KanyomseQ. LeX. TangJ. DaiF. MobetY. ChenC. ChengZ. DengC. NingY. YuR. ZengX. XiangT. KLF15 suppresses tumor growth and metastasis in Triple-Negative Breast Cancer by downregulating CCL2 and CCL7.Sci. Rep.20221211902610.1038/s41598‑022‑23750‑4 36347994
    [Google Scholar]
  27. ZhaoX. ChenL. WuJ. YouJ. HongQ. YeF. Transcription factor KLF15 inhibits the proliferation and migration of gastric cancer cells via regulating the TFAP2A-AS1/NISCH axis.Biol. Direct20211612110.1186/s13062‑021‑00300‑y 34727954
    [Google Scholar]
  28. WangX. HeM. LiJ. WangH. HuangJ. KLF15 suppresses cell growth and predicts prognosis in lung adenocarci noma.Biomed. Pharmacoth.2018106672677
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073331908241002044719
Loading
/content/journals/cchts/10.2174/0113862073331908241002044719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test