Skip to content
2000
Volume 28, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background and Aim

As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.

Methods

The HTQD chemical constituents were screened using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Furthermore, transcriptomics analysis was performed mRNA sequencing to identify significantly differentially expressed proteins. Moreover, the key target proteins of HTQD in the treatment of hypertensive ED were screened by network pharmacology and transcriptomics. In addition, the endothelial cells of the corpus cavernosum were assessed using hematoxylin-eosin staining. The transcript and protein expressions were evaluated western blotting and Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR).

Results

The network pharmacology and transcriptome mRNA sequencing revealed that KCNE1 may be the target protein of HTQD in improving hypertensive ED. After HTQD treatment, the systolic and diastolic blood pressure (BP) of hypertensive rats decreased, the number of erections increased, and the pathological structure of the penis was improved. Moreover, HTQD downregulated the protein and mRNA expression of AngII, AT1R, DAG, and PKCε, whereas it up-regulated the transcript and protein expression of KCNE1.

Conclusion

HTQD may activate the PKCε pathway through AngII, inhibit the expression of KCNE1 protein, relax vascular smooth muscles, and improve erectile function.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073330086241016115236
2025-01-07
2025-12-30
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/19/CCHTS-28-19-05.html?itemId=/content/journals/cchts/10.2174/0113862073330086241016115236&mimeType=html&fmt=ahah

References

  1. JurdanaM. ŽibernaL. Sarcopenic obesity and hypertension in elderly patients: A narrative review of pathophysiology and management strategies.Ann. Ist. Super. Sanita2023593231239 37712242
    [Google Scholar]
  2. YeM. ChenJ. MaJ. WangJ. ZhangC. ChenB. WuZ. ZhaoF. MaL. Causal association of cardiovascular disease with erectile dysfunction: A two‐sample bidirectional mendelian randomization analysis.Andrology20231171368137610.1111/andr.13421 36891666
    [Google Scholar]
  3. PatelJ.P. LeeE.H. Mena-HurtadoC.I. WalkerC.N. Evaluation and management of erectile dysfunction in the hypertensive patient.Curr. Cardiol. Rep.20171998910.1007/s11886‑017‑0889‑z 28836189
    [Google Scholar]
  4. KorogluG. Kaya-SezginerE. Yilmaz-OralD. GurS. Management of erectile dysfunction: An under-recognition of hypertension.Curr. Pharm. Des.201824303506351910.2174/1381612824666180828104350 30152279
    [Google Scholar]
  5. XiongY. ZhangF. ZhangY. WangW. RanY. WuC. ZhuS. QinF. YuanJ. Insights into modifiable risk factors of erectile dysfunction, a wide-angled mendelian randomization study.J. Adv. Res.20245814916110.1016/j.jare.2023.05.008 37236543
    [Google Scholar]
  6. MeldrumD.R. GamboneJ.C. MorrisM.A. MeldrumD.A.N. EspositoK. IgnarroL.J. The link between erectile and cardiovascular health: The canary in the coal mine.Am. J. Cardiol.2011108459960610.1016/j.amjcard.2011.03.093 21624550
    [Google Scholar]
  7. WangP. XiongX. LiS. Efficacy and safety of a traditional chinese herbal formula xuefu zhuyu decoction for hypertension: A systematic review and meta-analysis.Medicine (Baltimore)20159442e185010.1097/MD.0000000000001850 26496333
    [Google Scholar]
  8. YuP. MaC. WangJ. Effects of banxia baizhu tianma decoction combined with xuefu zhuyu decoction on endothelial function in patients with hypertension.World Chin Med20191424082411
    [Google Scholar]
  9. Paz OcaranzaM. RiquelmeJ.A. GarcíaL. JalilJ.E. ChiongM. SantosR.A.S. LavanderoS. Counter-regulatory renin–angiotensin system in cardiovascular disease.Nat. Rev. Cardiol.202017211612910.1038/s41569‑019‑0244‑8 31427727
    [Google Scholar]
  10. WuG.B. DuH.B. ZhaiJ.Y. SunS. CuiJ.L. ZhangY. ZhaoZ.A. WuJ.L. JohnsonA.K. XueB. ZhaoZ.G. ZhangG.S. Controlled hemorrhage sensitizes angiotensin ii-elicited hypertension through activation of the brain renin-angiotensin system independently of endoplasmic reticulum stress.Oxid. Med. Cell. Longev.2022202211310.1155/2022/6371048 35069977
    [Google Scholar]
  11. XuT. FanX. ZhaoM. WuM. LiH. JiB. ZhuX. LiL. DingH. SunM. XuZ. GaoQ. DNA methylation-reprogrammed Ang II (Angiotensin II) type 1 receptor-early growth response gene 1-protein kinase c ε axis underlies vascular hypercontractility in antenatal hypoxic offspring.Hypertension202177249150610.1161/HYPERTENSIONAHA.120.16247 33342239
    [Google Scholar]
  12. El BekayR. ÁlvarezM. MonteseirínJ. ÁlbaG. ChacónP. VegaA. Martín-NietoJ. JiménezJ. PintadoE. BedoyaF.J. SobrinoF. Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: Involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-κB.Blood2003102266267110.1182/blood‑2002‑09‑2785 12663441
    [Google Scholar]
  13. SongX.M. YuQ. DongX. YangH.O. ZengK.W. LiJ. TuP.F. Aldose reductase inhibitors attenuate β-amyloid-induced TNF-α production in microlgia via ROS-PKC-mediated NF-κB and MAPK pathways.Int. Immunopharmacol.201750303710.1016/j.intimp.2017.06.005 28623716
    [Google Scholar]
  14. LiX. FengJ.L. ChenZ.L. BaoB.H. DaiH.H. MengF.C. DengS. WangB. LiH.S. WangJ.S. Mechanism by which huoxue tongluo qiwei decoction improves the erectile function of rats with diabetic erectile dysfunction.J. Ethnopharmacol.202228311467410.1016/j.jep.2021.114674 34560214
    [Google Scholar]
  15. DingM. JiangY. GaoW. LiM. ChenL. YangH. LiP. Characterization and quantification of chemical constituents in angong niuhuang pill using ultra-high performance liquid chromatography tandem mass spectrometry.J. Pharm. Biomed. Anal.202322811530910.1016/j.jpba.2023.115309 36841067
    [Google Scholar]
  16. GarciaA. BarbasC. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics.Methods Mol. Biol.201170819120410.1007/978‑1‑61737‑985‑7_11 21207291
    [Google Scholar]
  17. MaT.T. ZhangG.L. DaiC.F. ZhangB.R. CaoK.X. WangC.G. YangG.W. WangX.M. Scutellaria barbata and hedyotis diffusa herb pair for breast cancer treatment: potential mechanism based on network pharmacology.J. Ethnopharmacol.202025911292910.1016/j.jep.2020.112929 32416245
    [Google Scholar]
  18. RappaportN. FishilevichS. NudelR. TwikM. BelinkyF. PlaschkesI. SteinT.I. CohenD. Oz-LeviD. SafranM. LancetD. Rational confederation of genes and diseases: NGS interpretation via genecards, malacards and varelect.Biomed. Eng. Online201716S1Suppl. 17210.1186/s12938‑017‑0359‑2 28830434
    [Google Scholar]
  19. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433Database issueD514D51710.1093/nar/gki033 15608251
    [Google Scholar]
  20. SzklarczykD. MorrisJ.H. CookH. KuhnM. WyderS. SimonovicM. SantosA. DonchevaN.T. RothA. BorkP. JensenL.J. von MeringC. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible.Nucleic Acids Res.201745D1D362D36810.1093/nar/gkw937 27924014
    [Google Scholar]
  21. MajeedA. MukhtarS. Protein–protein interaction network exploration using cytoscape.Methods Mol. Biol.2023269041942710.1007/978‑1‑0716‑3327‑4_32 37450163
    [Google Scholar]
  22. ZhaoR. HeY. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice.J. Ethnopharmacol.201821028729510.1016/j.jep.2017.08.041 28882624
    [Google Scholar]
  23. HuB. XuG. ZhengY. TongF. QianP. PanX. ZhouX. ShenR. Chelerythrine attenuates renal ischemia/reperfusion-induced myocardial injury by activating CSE/H2S via PKC/NF-κB pathway in diabetic rats.Kidney Blood Press. Res.201742237938810.1159/000477948 28624831
    [Google Scholar]
  24. SatoF. AokiH. NakamuraK. TaguchiM. AokiT. YasudaN. Suppressive effects of chronic hyperprolactinemia on penile erection and yawning following administration of apomorphine to pituitary-transplanted rats.J. Androl.1997181212510.1002/j.1939‑4640.1997.tb01872.x 9089064
    [Google Scholar]
  25. ClavijoR.I. MinerM.M. RajferJ. Erectile dysfunction and essential hypertension: The same aging-related disorder?Rev. Urol.2014164167171 25548543
    [Google Scholar]
  26. HaleT.M. HannanJ.L. CarrierS. DeBloisD. AdamsM.A. Targeting vascular structure for the treatment of sexual dysfunction.J. Sex. Med.20096Suppl. 321022010.1111/j.1743‑6109.2008.01174.x 19207270
    [Google Scholar]
  27. XuY. ChenC. YangY. AiS. AoW. KongL. ZhangY. LiJ. XiaoJ. Activation of the vascular smooth muscle GLP-1/NCX1 pathway regulates cytoplasmic Ca2+ Homeostasis and improves blood pressure variability in hypertension.Gerontology202369560361410.1159/000527675 36882028
    [Google Scholar]
  28. JacksonW.F. Potassium channels in regulation of vascular smooth muscle contraction and growth.Adv. Pharmacol.2017788914410.1016/bs.apha.2016.07.001 28212804
    [Google Scholar]
  29. BarhaninJ. LesageF. GuillemareE. FinkM. LazdunskiM. RomeyG. KvLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium current.Nature19963846604788010.1038/384078a0 8900282
    [Google Scholar]
  30. ChanM. SahakyanH. EldstromJ. SastreD. WangY. DouY. PourrierM. VardanyanV. FedidaD. A generic binding pocket for small molecule IKs activators at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channel complexes.eLife202312RP8703810.7554/eLife.87038 37707495
    [Google Scholar]
  31. GriendlingK.K. MurphyT.J. AlexanderR.W. Molecular biology of the renin-angiotensin system.Circulation19938761816182810.1161/01.CIR.87.6.1816 8389259
    [Google Scholar]
  32. KandaV.A. PurtellK. AbbottG.W. Protein kinase C downregulates IKs by stimulating KCNQ1-KCNE1 potassium channel endocytosis.Heart Rhythm20118101641164710.1016/j.hrthm.2011.04.034 21699843
    [Google Scholar]
  33. NunesK.P. LabaziH. WebbR.C. New insights into hypertension-associated erectile dysfunction.Curr. Opin. Nephrol. Hypertens.201221216317010.1097/MNH.0b013e32835021bd 22240443
    [Google Scholar]
  34. JinL.M. Angiotensin II signaling and its implication in erectile dysfunction.J. Sex. Med.20096Suppl. 330231010.1111/j.1743‑6109.2008.01188.x 19267853
    [Google Scholar]
  35. Van WagonerD.R. KirianM. LamorgeseM. Phenylephrine suppresses outward K+ currents in rat atrial myocytes.Am. J. Physiol.19962713 Pt 2H937H946 8853328
    [Google Scholar]
  36. SiM. XuJ. ZhangF. WangC. DuX. ZhangH. Involvement of protein kinase A and C in norepinephrine- and angiotensin II-induced modulation of cardiac IKs.Pharmacology2013923-421722610.1159/000354881 24158123
    [Google Scholar]
  37. ZankovD.P. Omatsu-KanbeM. IsonoT. ToyodaF. DingW.G. MatsuuraH. HorieM. Angiotensin II potentiates the slow component of delayed rectifier K+ current via the AT1 receptor in guinea pig atrial myocytes.Circulation2006113101278128610.1161/CIRCULATIONAHA.104.530592 16534027
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073330086241016115236
Loading
/content/journals/cchts/10.2174/0113862073330086241016115236
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test