Skip to content
2000
Volume 28, Issue 17
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The TAp73 gene is an anti-cancer gene that also affects the junction between Sertoli and germ cells. Inhibition of this gene causes infertility in male mice. Our previous research proved that Wuzi-Yanzong-Wan (WZYZW) can protect spermatogenesis and maturation by preventing TAp73 inhibition.

Objective

This study aimed to investigate the effect of drug-containing serum of WZYZW on the defect of cell-cell junctions in the Sertoli-germ cells co-culture system .

Methods

LC-HRMS was used to analyze the content of active ingredients in WZYZW-medicated serum. Then, primary extraction and co-culture of germ cells and Sertoli cells were carried out. Co-cultured cells were added with PFT-α to induce the TAp73 inhibition model, with WZYZW-medicated serum at 2.5%, 5%, and 10% treated in parallel. Sloughing of germ cells from Sertoli cells was calculated. Transmission electron microscopy (TEM), Immunofluorescence, qRT-PCR, and western blot methods were employed.

Results

The drug-containing serum of WZYZW contained schisandrin, hyperoside, geniposidic acid, ellagic acid, and quercetin. Using TEM assay, we observed restoration of the desmosome-like (Des), tight junctions (TJ), and basal ectoplasmic specialization (ES) structure following WZYZW treatment. WZYZW caused inhibition of peptidase and protease inhibitors (tissue inhibitor of metalloproteinase-1 (TIMP1), Serpina3n) by immunofluorescence analysis. Western blot and qRT-PCR analysis revealed that WZYZW was able to ameliorate the expressions of peptidase and protease inhibitors and cell adhesion factors, such as TAp73, TIMP1, Serpina3n, Desmocollin-3, N-cadherin, and Nectin-2.

Conclusion

WZYZW-medicated serum could prevent the defect of cell-cell junctions between Sertoli-germ cells co-culture system by up-regulating the expression of TAp73.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073328011241004110538
2024-10-15
2025-12-17
Loading full text...

Full text loading...

References

  1. BieniekJ.M. LoK.C. Recent advances in understanding & managing male infertility.F1000 Res.20165275610.12688/f1000research.9375.1 27990271
    [Google Scholar]
  2. EisenbergM.L. EstevesS.C. LambD.J. HotalingJ.M. GiwercmanA. HwangK. ChengY.S. Male infertility.Nat. Rev. Dis. Primers2023914910.1038/s41572‑023‑00459‑w 37709866
    [Google Scholar]
  3. HoriuchiK. Perez-CerezalesS. PapasaikasP. Ramos-IbeasP. López-CardonaA.P. Laguna-BarrazaR. Fonseca BalvísN. PericuestaE. Fernández-GonzálezR. PlanellsB. VieraA. SujaJ.A. RossP.J. AlénF. OrioL. Rodriguez de FonsecaF. PintadoB. ValcárcelJ. Gutiérrez-AdánA. Impaired spermatogenesis, muscle, and erythrocyte function in U12 intron splicing-defective zrsr1 mutant mice.Cell Rep.201823114315510.1016/j.celrep.2018.03.028 29617656
    [Google Scholar]
  4. MrukD.D. XiaoX. LydkaM. LiM.W.M. BilinskaB. ChengC.Y. Intercellular adhesion molecule 1: Recent findings and new concepts involved in mammalian spermatogenesis.Semin. Cell Dev. Biol.201429435410.1016/j.semcdb.2013.07.003 23942142
    [Google Scholar]
  5. LieP.P.Y. MrukD.D. LeeW.M. ChengC.Y. Cytoskeletal dynamics and spermatogenesis.Philos. Trans. R. Soc. Lond. B Biol. Sci.201036515461581159210.1098/rstb.2009.0261 20403871
    [Google Scholar]
  6. O’DonnellL. O’BryanM.K. Microtubules and spermatogenesis.Semin. Cell Dev. Biol.201430455410.1016/j.semcdb.2014.01.003 24440897
    [Google Scholar]
  7. KoperaI.A. BilinskaB. ChengC.Y. MrukD.D. Sertoli–germ cell junctions in the testis: A review of recent data.Philos. Trans. R. Soc. Lond. B Biol. Sci.201036515461593160510.1098/rstb.2009.0251 20403872
    [Google Scholar]
  8. ZiparoE. GeremiaR. RussoM.A. StefaniniM. Surface interaction in vitro between sertoli cells and germ cells at different stages of spermatogenesis.Am. J. Anat.1980159438538810.1002/aja.1001590404 7223673
    [Google Scholar]
  9. HimeG.R. AbudH.E. Regulation of cell adhesion in the testis: A new role for p73.Asian J. Androl.201416679980010.4103/1008‑682X.133315 25038182
    [Google Scholar]
  10. KangH.J. RosenwaksZ. p53 and reproduction.Fertil. Steril.20181091394310.1016/j.fertnstert.2017.11.026 29307398
    [Google Scholar]
  11. HolembowskiL. KramerD. RiedelD. SordellaR. NemajerovaA. DobbelsteinM. MollU.M. TAp73 is essential for germ cell adhesion and maturation in testis.J. Cell Biol.201420471173119010.1083/jcb.201306066 24662569
    [Google Scholar]
  12. InoueS. TomasiniR. RufiniA. EliaA.J. AgostiniM. AmelioI. CesconD. DinsdaleD. ZhouL. HarrisI.S. LacS. SilvesterJ. LiW.Y. SasakiM. HaightJ. BrüstleA. WakehamA. MckerlieC. JurisicovaA. MelinoG. MakT.W. TAp73 is required for spermatogenesis and the maintenance of male fertility.Proc. Natl. Acad. Sci. USA201411151843184810.1073/pnas.1323416111 24449892
    [Google Scholar]
  13. LiuH.J. DengM.Y. ZhuY.Y. WuD.L. TongX.H. LiL. WangL. XuF. WangT.S. Establishment of an oligoasthenospermia mouse model based on TAp73 gene suppression.Animal Model. Exp. Med.20214435135810.1002/ame2.12186 34977486
    [Google Scholar]
  14. CodeliaV.A. CisternaM. AlvarezA.R. MorenoR.D. p73 participates in male germ cells apoptosis induced by etoposide.Mol. Hum. Reprod.2010161073474210.1093/molehr/gaq045 20519366
    [Google Scholar]
  15. ZouD. MengX. WangB. DaiY. YangR. SuoY. WuY. YangW. LinR. Analysis of pharmacological mechanisms and targets mining of Wuzi-Yanzong-Wan for treating non-obstructive oligoasthenospermia.Biomed. Pharmacother.201911510889810.1016/j.biopha.2019.108898 31026728
    [Google Scholar]
  16. YuanH. DengZ. LiuX. DongT. QiuX. NanZ. Effect of Wuziyanzong pill on metabolism of dapoxetine in vivo and in vitro.J. Pharm. Biomed. Anal.201916611912710.1016/j.jpba.2018.12.022 30639931
    [Google Scholar]
  17. ZhaoM. ChanC.P.S. CheungC.W.C. AlqawasmehO. WangR.C.C. WuJ.C.Y. LinZ.X. LiT.C. ChungJ.P.W. MakJ.S.M. LawT.S.M. ChanD.Y.L. A double-blinded, randomized placebo-controlled trial on the effect of traditional Chinese medicine formula Wuzi Yanzong pill on improving semen qualities in men with suboptimal parameters.Trials201920154010.1186/s13063‑019‑3647‑2 31464617
    [Google Scholar]
  18. ZhiminC. MingyueA.O. YujiaoL. LingyingY.U. ZhuoY. LinH.U. WenbingL.I. ChangjiangH.U. YongxiangG. Wuzi Yanzong prescription from Traditional Chinese Medicine for male infertility: A narrative review.J. Tradit. Chin. Med.202343241642810.19852/j.cnki.jtcm.20221214.001 36994532
    [Google Scholar]
  19. ChenW. DingC. YuJ. WangC. WanL. HuH. MaJ. Wuzi yanzong pill—based on network pharmacology and in vivo evidence—protects against spermatogenesis disorder via the regulation of the apoptosis pathway.Front. Pharmacol.20201159282710.3389/fphar.2020.592827 33390971
    [Google Scholar]
  20. JiH.J. WangD.M. WuY.P. NiuY.Y. JiaL.L. LiuB.W. FengQ.J. FengM.L. Wuzi Yanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation.BMC Complement. Altern. Med.201616150910.1186/s12906‑016‑1481‑6 27927244
    [Google Scholar]
  21. HuS.Q. LiuD.L. LiC.R. XuY.H. HuK. CuiL.D. GuoJ. Wuzi-Yanzong prescription alleviates spermatogenesis disorder induced by heat stress dependent on Akt, NF-κB signaling pathway.Sci. Rep.20211111882410.1038/s41598‑021‑98036‑2 34552120
    [Google Scholar]
  22. ChangY. DengH. HeY. ZhouB. YuanD. WuJ. ZhangC. ZhaoH. Wuzi Yanzong administration alleviates Sertoli cell injury by recovering AKT/mTOR-mediated autophagy and the mTORC1-mTORC2 balance in aging-induced testicular dysfunction.J. Ethnopharmacol.2024318P11686510.1016/j.jep.2023.116865
    [Google Scholar]
  23. YongS. YangY. LiF. YaoH. YangF. ChangD. Wuzi Yanzong Pill for the treatment of male infertility.Medicine20209933e2176910.1097/MD.0000000000021769 32872074
    [Google Scholar]
  24. WuD. WangT. LiuH. XuF. XieS. TongX. LiL. PengD. KongL. Wuzi-Yanzong-Wan prevents oligoasthenospermia due to TAp73 suppression by affecting cellular junction remodeling in testicular tissue in mice.J. Ethnopharmacol.202330211586710.1016/j.jep.2022.115867
    [Google Scholar]
  25. WuD.L. WangT.S. ZhangW. WangJ.S. PengD.Y. KongL.Y. NMR-based metabolomics approach to study the effects of Wu-Zi-Yan-Zong-Wan on triptolide-induced oligospermia in rats.J. Ethnopharmacol.202126511319210.1016/j.jep.2020.113192 32889033
    [Google Scholar]
  26. WuD.L. WangT.S. LiuH.J. ZhangW. TongX.H. PengD.Y. KongL.Y. Study on the mechanism of Wuzi-Yanzong-Wan-medicated serum interfering with the mitochondrial permeability transition pore in the GC-2 cell induced by atractyloside.Chin. J. Nat. Med.202220428228910.1016/S1875‑5364(22)60153‑5 35487598
    [Google Scholar]
  27. MohamedM.K. Takyi-WilliamsJ. BaudotB. GroblerA. Development and validation of a LC-HRMS method for the quantification of cannabinoids and their metabolites in human plasma.Eur. J. Pharm. Sci.202115910570510.1016/j.ejps.2021.105705 33434601
    [Google Scholar]
  28. WegnerS. HongS. YuX. FaustmanE.M. Preparation of rodent testis co-cultures.Curr. Protoc. Toxicol2013Unit 16.1010.1002/0471140856.tx1610s55
    [Google Scholar]
  29. Mohammadi-SardooM. MandegaryA. Nematollahi-MahaniS.N. Moballegh NaseryM. NabiuniM. AmirheidariB. Cytotoxicity of mancozeb on Sertoli–germ cell co-culture system: Role of MAPK signaling pathway.Toxicol. Ind. Health2021371167468410.1177/07482337211044028 34644184
    [Google Scholar]
  30. PanM. WangQ. LiuY. XiaoN. NiuX. WuD. WangT. YanG. ShaoJ. Paeonol enhances treatment of fluconazole and amphotericin B against oropharyngeal candidiasis through HIF-1α related IL-17 signaling.Med. Mycol.2022603myac01110.1093/mmy/myac011 35099003
    [Google Scholar]
  31. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  32. GoossensS. van RoyF. Cadherin-mediated cell-cell adhesion in the testis.Front. Biosci.2005101-339841910.2741/1537 15574378
    [Google Scholar]
  33. ChengC.Y. MrukD.D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development.Physiol. Rev.200282482587410.1152/physrev.00009.2002 12270945
    [Google Scholar]
  34. LeeN.P.Y. ChengC.Y. Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: Is this a potential target for male contraceptive development?Hum. Reprod. Update200410434936910.1093/humupd/dmh026 15192055
    [Google Scholar]
  35. LiuX. WeiY. BaiX. LiM. LiH. WangL. ZhangS. LiX. ZhaoT. LiuY. GengR. CuiH. ChenH. XuR. LiuH. ZhangY. YangB. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1.Acta Pharm. Sin. B202010581282410.1016/j.apsb.2020.02.003 32528829
    [Google Scholar]
  36. MorrowG.B. MutchN.J. Past, present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1).Semin. Thromb. Hemost.202349330531310.1055/s‑0042‑1758791 36522166
    [Google Scholar]
  37. XiaoX. YangW. Actin-based dynamics during spermatogenesis and its significance.J. Zhejiang Univ. Sci. B20078749850610.1631/jzus.2007.B0498 17610330
    [Google Scholar]
  38. MrukD.D. ChengC.Y. The mammalian blood-testis barrier: Its biology and regulation.Endocr. Rev.201536556459110.1210/er.2014‑1101 26357922
    [Google Scholar]
  39. XiaoX. MrukD.D. WongC.K.C. Yan ChengC. Germ cell transport across the seminiferous epithelium during spermatogenesis.Physiology201429428629810.1152/physiol.00001.2014 24985332
    [Google Scholar]
  40. HessR.A. de FrancaL.R. Spermatogenesis and cycle of the seminiferous epithelium.Adv. Exp. Med. Biol.200963611510.1007/978‑0‑387‑09597‑4_1 19856159
    [Google Scholar]
  41. ParvinenM. VihkoK.K. ToppariJ. Cell interactions during the seminiferous epithelial cycle.Int. Rev. Cytol.198610411515110.1016/S0074‑7696(08)61925‑7 3531063
    [Google Scholar]
  42. GriswoldM.D. Interactions between germ cells and Sertoli cells in the testis.Biol. Reprod.199552221121610.1095/biolreprod52.2.211 7711190
    [Google Scholar]
  43. GriswoldM.D. The central role of Sertoli cells in spermatogenesis.Semin. Cell Dev. Biol.19989441141610.1006/scdb.1998.0203 9813187
    [Google Scholar]
  44. TomasiniR. TsuchiharaK. WilhelmM. FujitaniM. RufiniA. CheungC.C. KhanF. Itie-YoutenA. WakehamA. TsaoM. IovannaJ.L. SquireJ. JurisicaI. KaplanD. MelinoG. JurisicovaA. MakT.W. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions.Genes Dev.200822192677269110.1101/gad.1695308 18805989
    [Google Scholar]
  45. LiL. GaoY. ChenH. JesusT. TangE. LiN. LianQ. GeR. ChengC.Y. Cell polarity, cell adhesion, and spermatogenesis: Role of cytoskeletons.F1000 Res.20176156510.12688/f1000research.11421.1 28928959
    [Google Scholar]
  46. LiZ. ZhaoY. ZongQ. HuP. BaoW. LiuH.Y. CaiD. Lactoferrin restores the deoxynivalenol-impaired spermatogenesis and blood–testis barrier integrity via improving the antioxidant capacity and modifying the cell adhesion and inflammatory response.Antioxidants202312115210.3390/antiox12010152 36671014
    [Google Scholar]
  47. WenQ. WuS. LeeW.M. WongC.K.C. LuiW. SilvestriniB. ChengC.Y. Myosin VIIa supports spermatid/organelle transport and cell adhesion during spermatogenesis in the rat testis.Endocrinology2019160348450310.1210/en.2018‑00855 30649248
    [Google Scholar]
  48. RobinsonL.L.L. SznajderN.A. RileyS.C. AndersonR.A. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human fetal testis and ovary.Mol. Hum. Reprod.20017764164810.1093/molehr/7.7.641 11420387
    [Google Scholar]
  49. MrukD.D. SiuM.K.Y. ConwayA.M. LeeN.P.Y. LauA.S.N. ChengC.Y. Role of tissue inhibitor of metalloproteases-1 in junction dynamics in the testis.J. Androl.200324451052310.1002/j.1939‑4640.2003.tb02703.x 12826691
    [Google Scholar]
  50. OdetF. VerotA. Le Magueresse-BattistoniB. The mouse testis is the source of various serine proteases and serine proteinase inhibitors (SERPINs): Serine proteases and SERPINs identified in Leydig cells are under gonadotropin regulation.Endocrinology200614794374438310.1210/en.2006‑0484 16740973
    [Google Scholar]
  51. WuY. DuanP. WenY. ZhangJ. WangX. DongJ. ZhaoQ. FengS. LvC. GuoY. NamekawaS.H. YuanS. UHRF1 establishes crosstalk between somatic and germ cells in male reproduction.Cell Death Dis.202213437710.1038/s41419‑022‑04837‑2 35440090
    [Google Scholar]
  52. MorI. BruckT. GreenbergD. BersonA. SchreiberL. GrisaruD. SoreqH. Alternate AChE-R variants facilitate cellular metabolic activity and resistance to genotoxic stress through enolase and RACK1 interactions.Chem. Biol. Interact.20081751-3112110.1016/j.cbi.2008.05.019 18572152
    [Google Scholar]
  53. SiuM.K.Y. LeeW.M. ChengC.Y. The interplay of collagen IV, tumor necrosis factor-alpha, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis.Endocrinology2003144137138710.1210/en.2002‑220786 12488366
    [Google Scholar]
  54. MrukD. ZhuL.J. SilvestriniB. LeeW.M. ChengC.Y. Interactions of proteases and protease inhibitors in Sertoli-germ cell cocultures preceding the formation of specialized Sertoli-germ cell junctions in vitro.J. Androl.199718661262210.1002/j.1939‑4640.1997.tb02438.x 9432134
    [Google Scholar]
  55. SzaboR. BuggeT.H. Membrane-anchored serine proteases as regulators of epithelial function.Biochem. Soc. Trans.202048251752810.1042/BST20190675 32196551
    [Google Scholar]
  56. LiH. LiuS. WuS. GeR. ChengC.Y. NC1-Peptide From Collagen α3 (IV) Chains in the Basement Membrane of Testes Regulates Spermatogenesis via p-FAK-Y407.Endocrinology202016110bqaa13310.1210/endocr/bqaa133 32761085
    [Google Scholar]
  57. TevesM.E. RoldanE.R.S. Sperm bauplan and function and underlying processes of sperm formation and selection.Physiol. Rev.2022102176010.1152/physrev.00009.2020 33880962
    [Google Scholar]
  58. AdamsA. VoglW. ORP9 knockdown delays the maturation of junction-related endocytic structures in the testis and leads to impaired sperm release†.Biol. Reprod.202010361314132310.1093/biolre/ioaa159 32901807
    [Google Scholar]
  59. HolthöferB. WindofferR. TroyanovskyS. LeubeR.E. Structure and function of desmosomes.Int. Rev. Cytol.20072646516310.1016/S0074‑7696(07)64003‑0 17964922
    [Google Scholar]
  60. LieP.P.Y. ChengC.Y. MrukD.D. The biology of the desmosome-like junction a versatile anchoring junction and signal transducer in the seminiferous epithelium.Int. Rev. Cell Mol. Biol.201128622326910.1016/B978‑0‑12‑385859‑7.00005‑7 21199783
    [Google Scholar]
  61. RussellL. Desmosome‐like junctions between Sertoli and germ cells in the rat testis.Am. J. Anat.1977148330131210.1002/aja.1001480302 857631
    [Google Scholar]
  62. ZhouY. WangY. Action and interaction between retinoic acid signaling and blood–testis barrier function in the spermatogenesis cycle.Cells202211335210.3390/cells11030352 35159162
    [Google Scholar]
  63. ChengC.Y. MrukD.D. The blood-testis barrier and its implications for male contraception.Pharmacol. Rev.2012641166410.1124/pr.110.002790 22039149
    [Google Scholar]
  64. MokK.W. MrukD.D. ChengC.Y. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the “Yin” and “Yang” effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2.Int. Rev. Cell Mol. Biol.201330129135810.1016/B978‑0‑12‑407704‑1.00006‑3 23317821
    [Google Scholar]
  65. GaoY. XiaoX. LuiW. LeeW.M. MrukD. ChengC.Y. Cell polarity proteins and spermatogenesis.Semin. Cell Dev. Biol.201659627010.1016/j.semcdb.2016.06.008 27292315
    [Google Scholar]
  66. YangZ. LiuZ. YangY. DaiY. GaoX. Polypyrimidine tract binding protein 1 regulates the Sertoli cell blood testis barrier by promoting the expression of tight junction proteins.Exp. Ther. Med.202122284710.3892/etm.2021.10279 34149893
    [Google Scholar]
  67. QiuL. QianY. LiuZ. WangC. QuJ. WangX. WangS. Perfluorooctane sulfonate (PFOS) disrupts blood-testis barrier by down-regulating junction proteins via p38 MAPK/ATF2/MMP9 signaling pathway.Toxicology201637311210.1016/j.tox.2016.11.003 27818224
    [Google Scholar]
  68. Ozaki-KurodaK. NakanishiH. OhtaH. TanakaH. KuriharaH. MuellerS. IrieK. IkedaW. SakaiT. WimmerE. NishimuneY. TakaiY. Nectin couples cell-cell adhesion and the actin scaffold at heterotypic testicular junctions.Curr. Biol.200212131145115010.1016/S0960‑9822(02)00922‑3 12121624
    [Google Scholar]
  69. YanH.H.N. MrukD.D. LeeW.M. ChengC.Y. Cross-talk between tight and anchoring junctions-lesson from the testis.Adv. Exp. Med. Biol.200963623425410.1007/978‑0‑387‑09597‑4_13 19856171
    [Google Scholar]
  70. SiuM.K.Y. ChengC.Y. Interactions of proteases, protease inhibitors, and the beta1 integrin/laminin gamma3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis.Biol. Reprod.200470494596410.1095/biolreprod.103.023606 14645107
    [Google Scholar]
  71. WenQ. TangE.I. XiaoX. GaoY. ChuD.S. MrukD.D. SilvestriniB. ChengC.Y. Transport of germ cells across the seminiferous epithelium during spermatogenesis—the involvement of both actin- and microtubule-based cytoskeletons.Tissue Barriers201644e126504210.1080/21688370.2016.1265042 28123928
    [Google Scholar]
  72. LiN. MrukD.D. WongC.K.C. LeeW.M. HanD. ChengC.Y. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis.FASEB J.20152993788380510.1096/fj.14‑267997 26048141
    [Google Scholar]
  73. PiprekR.P. KlocM. MiziaP. KubiakJ.Z. The central role of cadherins in gonad development, reproduction, and fertility.Int. J. Mol. Sci.20202121826410.3390/ijms21218264 33158211
    [Google Scholar]
  74. LuiW.Y. MrukD.D. ChengC.Y. Interactions among IQGAP1, Cdc42, and the cadherin/catenin protein complex regulate Sertoli-germ cell adherens junction dynamics in the testis.J. Cell. Physiol.20052021496610.1002/jcp.20098 15389538
    [Google Scholar]
  75. XiaoX. MrukD.D. ChengC.Y. Intercellular adhesion molecules (ICAMs) and spermatogenesis.Hum. Reprod. Update201319216718610.1093/humupd/dms049 23287428
    [Google Scholar]
  76. PanZ. GaoY. LiuS. KeZ. GuoJ. MaW. CuiT. LiuB. ZhangX. Wu-Zi-Yan-Zong-Wan protects mouse blood-testis barrier from Tripterygium wilfordii Hook. f. multiglycoside-induced disruption by regulating proinflammatory cytokines.J. Ethnopharmacol.202128011444010.1016/j.jep.2021.114440 34293456
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073328011241004110538
Loading
/content/journals/cchts/10.2174/0113862073328011241004110538
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): adhesion; cell-cell junctions; Sertoli-germ cells; TAp73; Wuzi-Yanzong-Wan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test