Skip to content
2000
Volume 28, Issue 17
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aim

To study the mechanism by which curcumin regulates ovarian primordial follicle initiation in rats with triptolide-induced diminished ovarian reserve (DOR).

Methods

An gelatin sponge culture was performed on 3-day-old rat ovaries. After the establishment of the DOR model with triptolide, curcumin was administered for 3 days. Histological analysis and follicle counts were performed using H&E staining. ELISA detection of ovarian hormones in the culture medium (E, FSH and LH), western blotting and Q-PCR for protein and mRNA expression (LTCONS-00011173, TGF-β1, Smad1, AMH, PTEN and GDF-9).

Results

Ovarian primordial and growing follicles increased significantly after curcumin intervention ( < 0.05), FSH/LH and E levels were increased significantly ( < 0.05). Curcumin also significantly decreased the expression of LTCONS-00011173. Meanwhile, curcumin increased the expression of TGF-β, AMH, and GDF-9 ( < 0.05). In addition, curcumin increased Smad1 gene expression and protein phosphorylation in the ovary on the one hand ( < 0.05), but inhibited Smad1 and p-Smad1 protein expression on the other hand ( < 0.05). Moreover, curcumin decreased PTEN protein and mRNA expression ( < 0.05).

Conclusion

Curcumin activates primordial follicles in DOR model rats through TGF-β1 and downstream AMH signaling pathways and may limit follicle exhaustion through LncRNA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073327087240926065629
2024-10-14
2025-12-21
Loading full text...

Full text loading...

References

  1. VolovskyM. SeiferD.B. Current status of ovarian and endometrial biomarkers in predicting ART outcomes.J. Clin. Med.20241313373910.3390/jcm13133739 38999305
    [Google Scholar]
  2. OsmanN.A. MorghamA.E. Update on assessment of ovarian reserve testing.Obstet. Gynecol. Surv.202479742943510.1097/OGX.0000000000001284 39026444
    [Google Scholar]
  3. PenziasA. AzzizR. BendiksonK. FalconeT. HansenK. HillM. HurdW. JindalS. KalraS. MersereauJ. RacowskyC. RebarR. ReindollarR. ShannonC.N. SteinerA. StovallD. TanrikutC. TaylorH. YaugerB. Testing and interpreting measures of ovarian reserve: A committee opinion.Fertil. Steril.202011461151115710.1016/j.fertnstert.2020.09.134 33280722
    [Google Scholar]
  4. ZhuQ. LiY. MaJ. MaH. LiangX. Potential factors result in diminished ovarian reserve: A comprehensive review.J. Ovarian Res.202316120810.1186/s13048‑023‑01296‑x 37880734
    [Google Scholar]
  5. RoofK.A. AndreK.E. ModesittS.C. SchirmerD.A. Maximizing ovarian function and fertility following chemotherapy in premenopausal patients: Is there a role for ovarian suppression?Gynecol. Oncol. Rep.20245310138310.1016/j.gore.2024.101383 38633671
    [Google Scholar]
  6. Expert consensus on clinical diagnosis and treatment of ovarian reserve dysfunction.J. Reprod. Med.202231425434
    [Google Scholar]
  7. PastoreL.M. ChristiansonM.S. StellingJ. KearnsW.G. SegarsJ.H. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR.J. Assist. Reprod. Genet.2018351172310.1007/s10815‑017‑1058‑4 28971280
    [Google Scholar]
  8. SunY.C. SunX.F. DyceP.W. ShenW. ChenH. The role of germ cell loss during primordial follicle assembly: A review of current advances.Int. J. Biol. Sci.201713444945710.7150/ijbs.18836 28529453
    [Google Scholar]
  9. ZhuQ. MaH. WangJ. LiangX. Understanding the mechanisms of diminished ovarian Reserve: Insights from genetic variants and regulatory factors.Reprod. Sci.20243161521153210.1007/s43032‑024‑01467‑1 38347379
    [Google Scholar]
  10. PengY. GuoR. ShiB. LiD. The role of long non-coding RNA H19 in infertility.Cell Death Discov.20239126810.1038/s41420‑023‑01567‑y 37507391
    [Google Scholar]
  11. LuoJ. SunZ. MicroRNAs in POI, DOR and POR.Arch. Gynecol. Obstet.202330851419143010.1007/s00404‑023‑06922‑z 36840768
    [Google Scholar]
  12. NeveuV. Perez-JiménezJ. VosF. CrespyV. Du ChaffautL. MennenL. KnoxC. EisnerR. CruzJ. WishartD. ScalbertA. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods.Database J. Biol. Datab. Curation.20102010
    [Google Scholar]
  13. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.01021 33041781
    [Google Scholar]
  14. CioneE. La TorreC. CannataroR. CaroleoM.C. PlastinaP. GallelliL. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human microRNA modulation.Molecules20192516310.3390/molecules25010063 31878082
    [Google Scholar]
  15. PatelS.S. AcharyaA. RayR.S. AgrawalR. RaghuwanshiR. JainP. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease.Crit. Rev. Food Sci. Nutr.202060688793910.1080/10408398.2018.1552244 30632782
    [Google Scholar]
  16. DuanH. YangS. YangS. ZengJ. YanZ. ZhangL. MaX. DongW. ZhangY. ZhaoX. HuJ. XiaoL. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy.Phytomedicine202412815546810.1016/j.phymed.2024.155468 38471315
    [Google Scholar]
  17. HasanzadehS. ReadM.I. BlandA.R. MajeedM. JamialahmadiT. SahebkarA. Curcumin: An inflammasome silencer.Pharmacol. Res.202015910492110.1016/j.phrs.2020.104921 32464325
    [Google Scholar]
  18. JakubczykK. DrużgaA. KatarzynaJ. Skonieczna-ŻydeckaK. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials.Basel, SwitzerlandAntioxidants20209
    [Google Scholar]
  19. AzamiS.H. NazarianH. AbdollahifarM.A. EiniF. FarsaniM.A. NovinM.G. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice.Reprod. Fertil. Dev.202032329230310.1071/RD18472 31656219
    [Google Scholar]
  20. ChenL.P. WuZ.T. Effect of curcumin against the transforming growth factor β 1-induced myocardial fibrosis and mechanism.J. Biomater. Tissue Eng.2019914351440
    [Google Scholar]
  21. KunihiroA.G. BrickeyJ.A. FryeJ.B. LuisP.B. SchneiderC. FunkJ.L. Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues.J. Nutr. Biochem.20196315015610.1016/j.jnutbio.2018.09.021 30393127
    [Google Scholar]
  22. WangX. ZhangL. SiH. Combining luteolin and curcumin synergistically suppresses triple-negative breast cancer by regulating IFN and TGF-β signaling pathways.Biomed. Pharmaco.2024178117221
    [Google Scholar]
  23. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: LncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.202009045 33464299
    [Google Scholar]
  24. ZhengL. LuoR. SuT. HuL. GaoF. ZhangX. Differentially expressed lncRNAs after the activation of primordial follicles in mouse.Reprod. Sci.20192681094110410.1177/1933719118805869 30376771
    [Google Scholar]
  25. WangB.S. ZhangC.L. CuiX. LiQ. YangL. HeZ.Y. YangZ. ZengM.M. CaoN. Curcumin inhibits the growth and invasion of gastric cancer by regulating long noncoding RNA AC022424.2.World J. Gastrointest. Oncol.20241641437145210.4251/wjgo.v16.i4.1437 38660661
    [Google Scholar]
  26. LiZ. GaoY. LiL. XieS. Curcumin inhibits papillary thyroid cancer cell proliferation by regulating lncRNA LINC00691.Anal. Cell. Pathol.2022202211010.1155/2022/5946670 35256924
    [Google Scholar]
  27. LiJ. ChaiR. ChenY. ZhaoS. BianY. WangX. Curcumin targeting non-coding RNAs in colorectal cancer: Therapeutic and biomarker implications.Biomolecules20221210133910.3390/biom12101339 36291546
    [Google Scholar]
  28. InternationalS.C. Retracted: Block Copolymer Nanomicelle‐Encapsulated Curcumin Attenuates Cerebral Ischemia Injury and Affects Stem Cell Marker Expression by Inhibiting lncRNA GAS5.Stem Cells Int.202420241987398410.1155/2024/9873984 38298231
    [Google Scholar]
  29. FuX. ZhangJ. HuangX. MoZ. SangZ. DuanW. HuangW. Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the miR-489/LDHA pathway.Mediators Inflamm.2021202112510.1155/2021/6104529 34456629
    [Google Scholar]
  30. LiS. ZhangY. IshfaqM. LiuR. WeiG. ZhangX. Curcumin alleviates Aflatoxin B1-triggered chicken liver necroptosis by targeting the LOC769044/miR-1679/STAT1 axis.Poult. Sci.2024103810388310.1016/j.psj.2024.103883 38865767
    [Google Scholar]
  31. LiW. XiaW. ZhouH. YanL. ZengP. ZengQ. Thought of FU Shan’s treatment of slim infertility based on Ji Ji Gua.China J. Tradit. Chin. Med. Pharm.20203537373739
    [Google Scholar]
  32. LiW. DengD. WangJ. XuJ. Study on the mechanism of yangjing zhongyu decoction in regulating primordial follicle initiation in rats with DOR.China J. Tradit. Chin. Med. Pharm.202416
    [Google Scholar]
  33. LiW. DengD. XuJ. Study on the treatment of diminished ovarian reserve with yangJing zhongYu decoction by combination identification of substances with network pharmacology.Strait. Pharm. J.2023352226
    [Google Scholar]
  34. DongW. YangB. WangL. LiB. GuoX. ZhangM. JiangZ. FuJ. PiJ. GuanD. ZhaoR. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling.Toxicol. Appl. Pharmacol.2018346283610.1016/j.taap.2018.03.020 29571711
    [Google Scholar]
  35. LiangY. ZhuB. LiS. ZhaiY. YangY. BaiZ. ZengY. LiD. Curcumin protects bone biomechanical properties and microarchitecture in type2 diabetic rats with osteoporosis via the TGFβ/Smad2/3 pathway.Exp. Ther. Med.20202032200220810.3892/etm.2020.8943 32765696
    [Google Scholar]
  36. KunihiroA.G. BrickeyJ.A. FryeJ.B. ChengJ.N. LuisP.B. SchneiderC. FunkJ.L. Curcumin inhibition of TGFβ signaling in bone metastatic breast cancer cells and the possible role of oxidative metabolites.J. Nutr. Biochem.20229910884210.1016/j.jnutbio.2021.108842 34407450
    [Google Scholar]
  37. KamalD.A.M. SalamtN. YusufA.N.M. KashimM.I.A.M. MokhtarM.H. Potential health benefits of curcumin on female reproductive disorders: A review.Nutrients2021139312610.3390/nu13093126 34579002
    [Google Scholar]
  38. UroševićM. NikolićL. GajićI. NikolićV. DinićA. MiljkovićV. Curcumin: Biological activities and modern pharmaceutical forms.Antibiotics.202211213510.3390/antibiotics11020135 35203738
    [Google Scholar]
  39. LiuQ. ZhangQ. JiaF. JiangN. WangC. SunR. MaY. Construction of quaternary ammonium chitosan-coated protein nanoparticles as novel delivery system for curcumin: Characterization, stability, antioxidant activity and bio-accessibility.Food Chem.202445513992310.1016/j.foodchem.2024.139923 38833855
    [Google Scholar]
  40. SinghaA. KalladkaK. HarshithaM. SahaP. ChakrabortyG. MaitiB. SatyaprasadA.U. ChakrabortyA. SilS.K. Green synthesis of chitosan gum acacia based biodegradable polymeric nanoparticles to enhance curcumin’s antioxidant property: An in vivo zebrafish (Danio rerio) study.J. Microencapsul.202441539040110.1080/02652048.2024.2362188 38945157
    [Google Scholar]
  41. ChenQ. JiangY. YuanL. LiuL. ZhuX. ChenR. WangZ. WuK. LuoH. OuyangQ. Preparation, characterization, and antioxidant properties of self-Assembled nanomicelles of curcumin-loaded amphiphilic modified chitosan.Molecules20242911269310.3390/molecules29112693 38893567
    [Google Scholar]
  42. BehboodiH.R. SamadiF. RiasiA. NajafiM. AnsariM. EbadiM. A comparative study between curcumin and curcumin nanoparticles on reproductive performance and antioxidant system of aged roosters.Poult. Sci.20241031010403010.1016/j.psj.2024.104030 39127009
    [Google Scholar]
  43. ZiaA. FarkhondehT. Pourbagher-ShahriA.M. SamarghandianS. The role of curcumin in aging and senescence: Molecular mechanisms.Biomed. Pharmacother.202113411111910.1016/j.biopha.2020.111119 33360051
    [Google Scholar]
  44. Destici IsgorenG. DilbazB. Erturk AksakalS. Kiykac AltinbasS. YildirimZ. SimsekG. TapisizO.L. Impact of curcumin on ovarian reserve after tubal ligation: An experimental study.Reprod. Sci.20212892458246710.1007/s43032‑021‑00468‑8 33452609
    [Google Scholar]
  45. HuangT. ChenF. ZhangY. ChenS. LongF. WeiJ. ZhangK. ZengJ. ZhuQ. Li-LingJ. GongY. Decreased GDF9 and BMP15 in follicle fluid and granulosa cells and outcomes of IVF-ET among young patients with low prognosis.J. Assist. Reprod. Genet.202340356757610.1007/s10815‑023‑02723‑0 36689045
    [Google Scholar]
  46. LiuM. ZhangK. XuT. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency.Hum. Fertil.202124532533210.1080/14647273.2019.1672107 31607184
    [Google Scholar]
  47. MehdizadehA. SoleimaniM. AmjadiF. SeneA.A. SheikhhaM.H. DehghaniA. AshourzadehS. AaliB.S. DabiriS. ZandiehZ. Implication of novel BMP15 and GDF9 variants in unexpected poor ovarian response.Reprod. Sci.202431384085010.1007/s43032‑023‑01370‑1 37848645
    [Google Scholar]
  48. FountasS. PetinakiE. BolarisS. KargakouM. DafopoulosS. ZikopoulosA. MoustakliE. SotiriouS. DafopoulosK. The roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in folliculogenesis and in vitro fertilization.J. Clin. Med.20241313377510.3390/jcm13133775 38999341
    [Google Scholar]
  49. LvY. CaoR.C. LiuH.B. SuX.W. LuG. MaJ.L. ChanW.Y. Single-oocyte gene expression suggests that curcumin can protect the ovarian reserve by regulating the PTEN-AKT-FOXO3a pathway.Int. J. Mol. Sci.20212212657010.3390/ijms22126570 34207376
    [Google Scholar]
  50. MaidartiM. AndersonR.A. TelferE.E. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: Implications for primordial follicle activation, oocyte quality and ageing.Cells20209120010.3390/cells9010200 31947601
    [Google Scholar]
  51. de FeliciM. KlingerF.G. PI3K/PTEN/AKT signaling pathways in germ cell development and their involvement in germ cell tumors and ovarian dysfunctions.Int. J. Mol. Sci.20212218983810.3390/ijms22189838
    [Google Scholar]
  52. HongW. HuangQ. ZhuF. ZhengY. LiJ. DaiJ. ZhangL. PTEN regulates primordial follicular initation and growth in rats.Basic Clin. Med.20193910771084
    [Google Scholar]
  53. JiaS. MengA. TGFβ family signaling and development.Development20211485dev18849010.1242/dev.188490 33712443
    [Google Scholar]
  54. PatelR.H. TruongV.B. SabryR. AcostaJ.E. McCahillK. FavettaL.A. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells.Biol. Reprod.20231096994100810.1093/biolre/ioad125 37724935
    [Google Scholar]
  55. di ClementeN. JossoN. GouédardL. BelvilleC. Components of the anti-Müllerian hormone signaling pathway in gonads.Mol. Cell. Endocrinol.20032111-291410.1016/j.mce.2003.09.005 14656470
    [Google Scholar]
  56. CalvertM.E. KalraB. PatelA. KumarA. ShawN.D. Serum and urine profiles of TGF-β superfamily members in reproductive aged women. Clin. Chim. Acta.Int. J. Clin. Chem.202252496100
    [Google Scholar]
  57. RodriguesG.Q. BertoldoM.J. BritoI.R. SilvaC.M.G. SalesA.D. CastroS.V. DuffardN. LocatelliY. MermillodP. LoboC.H. CampelloC.C. RodriguesA.P.R. FreitasV.J.F. FigueiredoJ.R. Relative mRNA expression and immunolocalization for transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles.In Vitro Cell. Dev. Biol. Anim.201450868869910.1007/s11626‑014‑9775‑9 24879083
    [Google Scholar]
  58. TalR. SeiferD.B. Shohat-TalA. GraziR.V. MalterH.E. Transforming growth factor-β1 and its receptor soluble endoglin are altered in polycystic ovary syndrome during controlled ovarian stimulation.Fertil. Steril.2013100253854310.1016/j.fertnstert.2013.04.022 23684116
    [Google Scholar]
  59. RichardsonL. WilcocksonS.G. GuglielmiL. HillC.S. Context-dependent TGFβ family signalling in cell fate regulation.Nat. Rev. Mol. Cell Biol.2023241287689410.1038/s41580‑023‑00638‑3 37596501
    [Google Scholar]
  60. ZhouY.Y. WuY.Q. ChongC.J. ZhongS.M. WangZ.X. QinX.H. LiuZ.Q. LiuJ.Y. SongJ.L. Irpex lacteus polysaccharide exhibits therapeutic potential for ovarian fibrosis in PCOS rats via the TGF-β1/smad pathway.Heliyon202398e1874110.1016/j.heliyon.2023.e18741 37554783
    [Google Scholar]
  61. AoY. ChenX. ZhouZ. ZhangY. HongL. WeiS. WuY. TangW. The effect of SMAD1 gene on granulosa cells of qianbei ma sheep ovary and Its tissue expression analysis.Acta Veterinaria et Zootechnica Sinica20205116071618
    [Google Scholar]
  62. NguyenN.M.P. ChangE.M. ChauvinM. SicherN. KashiwagiA. NagykeryN. ChowC. MayP. Mermin-BunnelA. CleverdonJ. DuongT. MeinsohnM-C. GaoD. DonahoeP.K. PepinD. AMH protects the ovary from doxorubicin by regulating cell fate and the response to DNA damage.bioRxiv202410.1101/2024.05.23.595356
    [Google Scholar]
  63. HochbergA. DahanM.H. YaraliH. VuongL.N. EstevesS.C. Significance of serum AMH and antral follicle count discrepancy for the prediction of ovarian stimulation response in Poseidon criteria patients.J. Assist. Reprod. Genet.202441371772610.1007/s10815‑024‑03050‑8 38358433
    [Google Scholar]
  64. WangW. JiaZ. ZhangN. Diagnostic value of ovarian ultrasound index combined with AMH and LH/FSH in the success rate of IVF assisted pregnancy.Minerva Med.2024Online ahead of print10.23736/S0026‑4806.24.09173‑0 38727707
    [Google Scholar]
  65. HowardJ.A. HartK.N. ThompsonT.B. Molecular mechanisms of AMH signaling.Front. Endocrinol. (Lausanne)20221392782410.3389/fendo.2022.927824 35813657
    [Google Scholar]
  66. TalR. SeiferD.B. TalR. GrangerE. WantmanE. TalO. AMH highly correlates with cumulative live birth rate in women with diminished ovarian reserve independent of age.J. Clin. Endocrinol. Metab.202110692754276610.1210/clinem/dgab168 33729496
    [Google Scholar]
  67. GaoY. WangZ. LongY. YangL. JiangY. DingD. TengB. ChenM. YuanJ. GaoF. Unveiling the roles of sertoli cells lineage differentiation in reproductive development and disorders: A review.Front. Endocrinol.202415135759410.3389/fendo.2024.1357594 38699384
    [Google Scholar]
  68. HartK.N. StockerW.A. NagykeryN.G. WaltonK.L. HarrisonC.A. DonahoeP.K. PépinD. ThompsonT.B. Structure of AMH bound to AMHR2 provides insight into a unique signaling pair in the TGF-β family.Proc. Natl. Acad. Sci. USA202111826e210480911810.1073/pnas.2104809118 34155118
    [Google Scholar]
  69. GaoY. LiuC. WuT. LiuR. MaoW. GanX. LuX. LiuY. WanL. XuB. ChenM. Current status and perspectives of non-coding RNA and phase separation interactions.Biosci. Trends202216533034510.5582/bst.2022.01304 36273890
    [Google Scholar]
  70. ChattopadhyayP. Srinivasa VasudevanJ. PandeyR. Noncoding RNAs: Modulators and modulatable players during infection-induced stress response.Brief. Funct. Genomics2021201284110.1093/bfgp/elaa026 33491070
    [Google Scholar]
  71. ShenX. YanH. HuM. ZhouH. WangJ. GaoR. LiuQ. WangX. LiuY. The potential regulatory role of the non-coding RNAs in regulating the exogenous estrogen-induced feminization in takifugu rubripes gonad.Aquat. Toxicol.202427310702210.1016/j.aquatox.2024.107022 39032423
    [Google Scholar]
  72. ZhangT. ZhangJ. YangG. HuJ. WangH. JiangR. YaoG. Long non-coding RNA PWRN1 affects ovarian follicular development by regulating the function of granulosa cells.Reprod. Biomed. Online202448510369710.1016/j.rbmo.2023.103697 38430661
    [Google Scholar]
  73. LinX. NieX. DengP. WangL. HuC. JinN. Whispers of the polycystic ovary syndrome theater: Directing role of long noncoding RNAs.Noncoding RNA Res.2024941023103210.1016/j.ncrna.2024.05.003 39022674
    [Google Scholar]
  74. BouckenheimerJ. FauqueP. LecellierC.H. BrunoC. CommesT. LemaîtreJ.M. De VosJ. AssouS. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells.Sci. Rep.201881220210.1038/s41598‑018‑20727‑0 29396444
    [Google Scholar]
  75. SuT. Sereening, verification of differential expression and ovarian specific LncRNA and correlation signal pathway analysis before and after initiation of primordial follicles in mice.2018
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073327087240926065629
Loading
/content/journals/cchts/10.2174/0113862073327087240926065629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test