Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Variants in the gene are associated with paroxysmal kinesigenic dyskinesia and other episodic disorders. With the employment of variant screening in patients with episodic dyskinesia, many variants have been discovered. Bioinformatics tools are becoming increasingly important for predicting the functional significance of variants. This study aimed to evaluate the performance of six tools for missense variants.

Methods

Pathogenic variants were retrieved from the Human Gene Mutation Database (HGMD) and literature from the PubMed database. The benign set of non-deleterious variants was retrieved from the Genome Aggregation Database (gnomAD). The overall accuracy, sensitivity, specificity, positive predictive values, and negative predictive values of SIFT, PolyPhen2, MutationTaster, CADD, Fathmm, and Provean were analyzed. The MCC score and ROC curve were calculated. The GraphPad Prism 8.0 software was used to plot ROC curves for the six bioinformatics software.

Results

A total of 45 missense variants with confirmed pathogenicity were used as a positive set, and 222 missense variants were used as a negative set. The top three tools in accuracy are Fathmm, Provean, and MutationTaster. The top three predictors in sensitivity are SIFT, PolyPhen2, and CADD. Regarding specificity, the top three tools were Provean, Fathmm, and MutationTaster. In terms of the MCC and F-score, the highest degree was observed in Fathmm. Fathmm also had the highest AUC score. The cutoff values of Fathmm, CADD, PolyPhen2, and Provean were between the median prediction scores of the positive and negative sets. In contrast, the cutoff value of SIFT was below the median prediction score of the positive and negative sets. Fathmm had the highest accuracy.

Conclusion

The prediction performance of six tools differed among the parameters. Fathmm had the best prediction performance, with the highest accuracy and MCC/F-score for missense variants.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073308898240607090256
2024-06-20
2025-10-14
Loading full text...

Full text loading...

References

  1. MéneretA. RozeE. Paroxysmal movement disorders: An update.Rev. Neurol.20161728-943344510.1016/j.neurol.2016.07.005 27567459
    [Google Scholar]
  2. BagumaM. OssemannM. Paroxysmal kinesigenic dyskinesia as the presenting and only manifestation of multiple sclerosis after eighteen months of follow-up.J. Mov. Disord.2017102969810.14802/jmd.16055 28352057
    [Google Scholar]
  3. ChoiK.D. ChoiJ.H. Episodic ataxias: Clinical and genetic features.J. Mov. Disord.20169312913510.14802/jmd.16028 27667184
    [Google Scholar]
  4. GaroneG. CapuanoA. TravagliniL. GraziolaF. StregapedeF. ZanniG. VigevanoF. BertiniE. NicitaF. Clinical and genetic overview of paroxysmal movement disorders and episodic ataxias.Int. J. Mol. Sci.20202110360310.3390/ijms21103603 32443735
    [Google Scholar]
  5. BrunoM.K. HallettM. Gwinn-HardyK. SorensenB. ConsidineE. TuckerS. LynchD.R. MathewsK.D. SwobodaK.J. HarrisJ. SoongB.W. AshizawaT. JankovicJ. RennerD. FuY.H. PtacekL.J. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia.Neurology200463122280228710.1212/01.WNL.0000147298.05983.50 15623687
    [Google Scholar]
  6. de GusmãoC.M. GarciaL. MikatiM.A. SuS. Silveira-MoriyamaL. Paroxysmal genetic movement disorders and epilepsy.Front. Neurol.20211264803110.3389/fneur.2021.648031 33833732
    [Google Scholar]
  7. CaoL. HuangX. WangN. WuZ. ZhangC. GuW. CongS. MaJ. WeiL. DengY. FangQ. NiuQ. WangJ. WangZ. YinY. TianJ. TianS. BiH. JiangH. LiuX. LüY. SunM. WuJ. XuE. ChenT. ChenT. ChenX. LiW. LiS. LiQ. SongX. TangY. YangP. YangY. ZhangM. ZhangX. ZhangY. ZhangR. OuyangY. YuJ. HuQ. KeQ. YaoY. ZhaoZ. ZhaoX. ZhaoG. LiangF. ChengN. HanJ. PengR. ChenS. TangB. Recommendations for the diagnosis and treatment of paroxysmal kinesigenic dyskinesia: An expert consensus in China.Transl. Neurodegener.2021101710.1186/s40035‑021‑00231‑8 33588936
    [Google Scholar]
  8. XuJ.J. LiH.F. WuZ.Y. Paroxysmal kinesigenic dyskinesia: Genetics and pathophysiological mechanisms.Neurosci. Bull.202310.1007/s12264‑023‑01157‑z 38091244
    [Google Scholar]
  9. ChenW.J. LinY. XiongZ.Q. WeiW. NiW. TanG.H. GuoS.L. HeJ. ChenY.F. ZhangQ.J. LiH.F. LinY. MurongS.X. XuJ. WangN. WuZ.Y. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia.Nat. Genet.201143121252125510.1038/ng.1008 22101681
    [Google Scholar]
  10. LiJ. ZhuX. WangX. SunW. FengB. DuT. SunB. NiuF. WeiH. WuX. DongL. LiL. CaiX. WangY. LiuY. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis.J. Med. Genet.2012492767810.1136/jmedgenet‑2011‑100635 22131361
    [Google Scholar]
  11. LeeH.Y. HuangY. BruneauN. RollP. RobersonE.D.O. HermannM. QuinnE. MaasJ. EdwardsR. AshizawaT. BaykanB. BhatiaK. BressmanS. BrunoM.K. BruntE.R. CaraballoR. EchenneB. FejermanN. FruchtS. GurnettC.A. HirschE. HouldenH. JankovicJ. LeeW.L. LynchD.R. MohammedS. MüllerU. NespecaM.P. RennerD. RochetteJ. RudolfG. SaikiS. SoongB.W. SwobodaK.J. TuckerS. WoodN. HannaM. BowcockA.M. SzepetowskiP. FuY.H. PtáčekL.J. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions.Cell Rep.20121121210.1016/j.celrep.2011.11.001 22832103
    [Google Scholar]
  12. MéneretA. GrabliD. DepienneC. GaudeboutC. PicardF. DürrA. LagrouaI. BouteillerD. MignotC. DoummarD. AnheimM. TranchantC. BurbaudP. JedynakC.P. GrasD. SteschenkoD. DevosD. Billette de VillemeurT. VidailhetM. BriceA. RozeE. PRRT2 mutations.Neurology201279217017410.1212/WNL.0b013e31825f06c3 22744660
    [Google Scholar]
  13. ChenY.P. SongW. YangJ. ZhengZ.Z. HuangR. ChenK. ZhaoB. ChenX.P. BurgunderJ.M. ShangH.F. PRRT 2 mutation screening in patients with paroxysmal kinesigenic dyskinesia from S outhwest C hina.Eur. J. Neurol.201421117417610.1111/ene.12122 23496026
    [Google Scholar]
  14. MaoC. ShiC. SongB. WuJ. JiY. QinJ. LiY. WangJ. ShangD. SunS. XuY. Genotype–phenotype correlation in a cohort of paroxysmal kinesigenic dyskinesia cases.J. Neurol. Sci.20143401-2919310.1016/j.jns.2014.02.034 24661410
    [Google Scholar]
  15. TanL.C.S. MethawasinK. TengE.W.L. NgA.R.J. SeahS.H. AuW.L. LiuJ.J. FooJ.N. ZhaoY. TanE.K. Clinico‐genetic comparisons of paroxysmal kinesigenic dyskinesia patients with and without PRRT 2 mutations.Eur. J. Neurol.201421467467810.1111/ene.12142 23551744
    [Google Scholar]
  16. LampertiC. InvernizziF. SolazziR. FreriE. CarellaF. ZevianiM. ZibordiF. FuscoC. ZorziG. GranataT. GaravagliaB. NardocciN. Clinical and genetic features of paroxysmal kinesigenic dyskinesia in Italian patients.Eur. J. Paediatr. Neurol.201620115215710.1016/j.ejpn.2015.08.006 26384010
    [Google Scholar]
  17. GargD. MohammadS. ShuklaA. SharmaS. Genetic links to episodic movement disorders: Current insights.Appl. Clin. Genet.202316113010.2147/TACG.S363485 36883047
    [Google Scholar]
  18. HarveyS. KingM.D. GormanK.M. Paroxysmal movement disorders.Front. Neurol.20211265906410.3389/fneur.2021.659064 34177764
    [Google Scholar]
  19. ChenY. ChenD. ZhaoS. LiuG. LiH. WuZ.Y. Penetrance estimation of PRRT2 variants in paroxysmal kinesigenic dyskinesia and infantile convulsions.Front. Med.202115687788610.1007/s11684‑021‑0863‑4 34825340
    [Google Scholar]
  20. HuangX.J. WangS.G. GuoX.N. TianW.T. ZhanF.X. ZhuZ.Y. YinX.M. LiuQ. YinK.L. LiuX.R. ZhangY. LiuZ.G. LiuX.L. ZhengL. WangT. WuL. RongT.Y. WangY. ZhangM. BiG.H. TangW.G. ZhangC. ZhongP. WangC.Y. TangJ.G. LuW. ZhangR.X. ZhaoG.H. LiX.H. LiH. ChenT. LiH.Y. LuoX.G. SongY.Y. TangH.D. LuanX.H. ZhouH.Y. TangB.S. ChenS.D. CaoL. The phenotypic and genetic spectrum of paroxysmal kinesigenic dyskinesia in China.Mov. Disord.20203581428143710.1002/mds.28061 32392383
    [Google Scholar]
  21. LiuX.R. HuangD. WangJ. WangY.F. SunH. TangB. LiW. LaiJ.X. HeN. WuM. SuT. MengH. ShiY.W. LiB.M. TangB.S. LiaoW.P. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene.Neurol. Genet.201622e6610.1212/NXG.0000000000000066 27123484
    [Google Scholar]
  22. ZhangJ. KurganL. Review and comparative assessment of sequence-based predictors of protein-binding residues.Brief. Bioinform.201819582183710.1093/bib/bbx022 28334258
    [Google Scholar]
  23. RodriguesC. Santos-SilvaA. CostaE. Bronze-da-RochaE. Performance of in silico Tools for the Evaluation of UGT1A1 Missense Variants.Hum. Mutat.201536121215122510.1002/humu.22903 26377032
    [Google Scholar]
  24. HassanM.S. ShaalanA.A. DessoukyM.I. AbdelnaiemA.E. ElHefnawiM. A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases.Gene2019680203310.1016/j.gene.2018.09.028 30240882
    [Google Scholar]
  25. HassanM.S. ShaalanA.A. DessoukyM.I. AbdelnaiemA.E. ElHefnawiM. Evaluation of computational techniques for predicting non-synonymous single nucleotide variants pathogenicity.Genomics2019111486988210.1016/j.ygeno.2018.05.013 29842949
    [Google Scholar]
  26. NgP.C. HenikoffS. Predicting deleterious amino acid substitutions.Genome Res.200111586387410.1101/gr.176601 11337480
    [Google Scholar]
  27. SimN. L. KumarP. HuJ. HenikoffS. SchneiderG. NgP. C. SIFT web server: Predicting effects of amino acid substitutions on proteins.Nucleic Acids Res201240Web Server issueW452W45710.1093/nar/gks539
    [Google Scholar]
  28. KumarP. HenikoffS. NgP.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.Nat. Protoc.2009471073108110.1038/nprot.2009.86 19561590
    [Google Scholar]
  29. AdzhubeiI. JordanD.M. SunyaevS.R. Predicting functional effect of human missense mutations using PolyPhen-2.Curr. Protoc.201310.1002/0471142905.hg0720s76
    [Google Scholar]
  30. SchwarzJ.M. RödelspergerC. SchuelkeM. SeelowD. MutationTaster evaluates disease-causing potential of sequence alterations.Nat. Methods20107857557610.1038/nmeth0810‑575 20676075
    [Google Scholar]
  31. SteinhausR. ProftS. SchuelkeM. CooperD.N. SchwarzJ.M. SeelowD. MutationTaster2021.Nucleic Acids Res.202149W1W446W45110.1093/nar/gkab266 33893808
    [Google Scholar]
  32. RentzschP. WittenD. CooperG.M. ShendureJ. KircherM. CADD: Predicting the deleteriousness of variants throughout the human genome.Nucleic Acids Res.201947D1D886D89410.1093/nar/gky1016 30371827
    [Google Scholar]
  33. GroßC. DerksM. MegensH.J. BosseM. GroenenM.A.M. ReindersM. de RidderD. pCADD: SNV prioritisation in Sus scrofa.Genet. Sel. Evol.2020521410.1186/s12711‑020‑0528‑9 32033531
    [Google Scholar]
  34. SeliD. EllisK.T. GoldustM. ShahK. HuR. ZhouJ. McNiffJ.M. ChoateK.A. Association of somatic ATP2A2 damaging variants with grover disease.JAMA Dermatol.2023159774574910.1001/jamadermatol.2023.1139 37195706
    [Google Scholar]
  35. ShihabH.A. GoughJ. CooperD.N. StensonP.D. BarkerG.L.A. EdwardsK.J. DayI.N.M. GauntT.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.Hum. Mutat.2013341576510.1002/humu.22225 23033316
    [Google Scholar]
  36. RogersM.F. ShihabH.A. MortM. CooperD.N. GauntT.R. CampbellC. FATHMM-XF: Accurate prediction of pathogenic point mutations via extended features.Bioinformatics201834351151310.1093/bioinformatics/btx536 28968714
    [Google Scholar]
  37. FerlainoM. RogersM.F. ShihabH.A. MortM. CooperD.N. GauntT.R. CampbellC. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.BMC Bioinformatics201718144210.1186/s12859‑017‑1862‑y 28985712
    [Google Scholar]
  38. ChoiY. ChanA.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels.Bioinformatics201531162745274710.1093/bioinformatics/btv195 25851949
    [Google Scholar]
  39. MájekP. LüftingerL. BeiskenS. RatteiT. MaternaA. Genome-wide mutation scoring for machine-learning-based antimicrobial resistance prediction.Int. J. Mol. Sci.202122231304910.3390/ijms222313049 34884852
    [Google Scholar]
  40. RossiP. SterliniB. CastroflorioE. MarteA. OnofriF. ValtortaF. MaraglianoL. CorradiA. BenfenatiF. A novel topology of proline-rich transmembrane protein 2 (PRRT2).J. Biol. Chem.2016291126111612310.1074/jbc.M115.683888 26797119
    [Google Scholar]
  41. ValenteP. CastroflorioE. RossiP. FaddaM. SterliniB. CervigniR.I. PrestigioC. GiovedìS. OnofriF. MuraE. GuarnieriF.C. MarteA. OrlandoM. ZaraF. FassioA. ValtortaF. BaldelliP. CorradiA. BenfenatiF. PRRT2 is a key component of the Ca 2+ -dependent neurotransmitter release machinery.Cell Rep.201615111713110.1016/j.celrep.2016.03.005 27052163
    [Google Scholar]
  42. LiuY.T. NianF.S. ChouW.J. TaiC.Y. KwanS.Y. ChenC. KuoP.W. LinP.H. ChenC.Y. HuangC.W. LeeY.C. SoongB.W. TsaiJ.W. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects.Oncotarget2016726391843919610.18632/oncotarget.9258 27172900
    [Google Scholar]
  43. HeronS.E. DibbensL.M. Role of PRRT2 in common paroxysmal neurological disorders: A gene with remarkable pleiotropy.J. Med. Genet.201350313313910.1136/jmedgenet‑2012‑101406 23343561
    [Google Scholar]
  44. Bertoli-AvellaA.M. BeetzC. AmezianeN. RochaM.E. GuatibonzaP. PereiraC. CalvoM. Herrera-OrdonezN. Segura-CastelM. Diego-AlvarezD. ZawadaM. KandaswamyK.K. WerberM. PakniaO. ZielskeS. UgrinovskiD. WarnackG. KampeK. IurașcuM.I. CozmaC. VogelF. AlhashemA. HertecantJ. Al-ShamsiA.M. AlswaidA.F. EyaidW. Al MutairiF. AlfaresA. AlbalwiM.A. AlfadhelM. Al-SannaaN.A. ReardonW. AlanayY. RolfsA. BauerP. Successful application of genome sequencing in a diagnostic setting: 1007 index cases from a clinically heterogeneous cohort.Eur. J. Hum. Genet.202129114115310.1038/s41431‑020‑00713‑9 32860008
    [Google Scholar]
  45. WangZ. DongH. JiX. LuanS. CaoH. Association of an insertion mutation in PRRT2 with hereditary spastic paraplegia accompanied by polyneuropathy.J. Clin. Lab. Anal.2021356e2377210.1002/jcla.23772 33826176
    [Google Scholar]
  46. KimK. GraingerD.W. OkanoT. Utah’s cell sheet tissue engineering center.Regen. Ther.2019112410.1016/j.reth.2019.03.003 31193110
    [Google Scholar]
  47. DelcourtM. RiantF. ManciniJ. MilhM. NavarroV. RozeE. HumbertclaudeV. KorffC. Des PortesV. SzepetowskiP. DoummarD. EchenneB. QuintinS. LeboucqN. Singh AmrathlalR. RochetteJ. RoubertieA. Severe phenotypic spectrum of biallelic mutations in PRRT2 gene.J. Neurol. Neurosurg. Psychiatry201586778278510.1136/jnnp‑2014‑309025 25595153
    [Google Scholar]
  48. GhoshR. OakN. PlonS.E. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines.Genome Biol.201718122510.1186/s13059‑017‑1353‑5 29179779
    [Google Scholar]
  49. LeongI.U.S. StuckeyA. LaiD. SkinnerJ.R. LoveD.R. Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations.BMC Med. Genet.20151613410.1186/s12881‑015‑0176‑z 25967940
    [Google Scholar]
  50. KerrI.D. CoxH.C. MoyesK. EvansB. BurdettB.C. van KanA. McElroyH. VailP.J. BrownK.L. SumampongD.B. MonteferranteN.J. HardmanK.L. TheisenA. MundtE. WenstrupR.J. EggingtonJ.M. Assessment of in silico protein sequence analysis in the clinical classification of variants in cancer risk genes.J. Community Genet.201782879510.1007/s12687‑016‑0289‑x 28050887
    [Google Scholar]
  51. TangB. LiB. GaoL.D. HeN. LiuX.R. LongY.S. ZengY. YiY.H. SuT. LiaoW.P. Optimization of in silico tools for predicting genetic variants: Individualizing for genes with molecular sub-regional stratification.Brief. Bioinform.20202151776178610.1093/bib/bbz115 31686106
    [Google Scholar]
  52. ErnstC. HahnenE. EngelC. NothnagelM. WeberJ. SchmutzlerR.K. HaukeJ. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics.BMC Med. Genomics20181113510.1186/s12920‑018‑0353‑y 29580235
    [Google Scholar]
  53. LuxembourgB. D’SouzaM. KörberS. SeifriedE. Prediction of the pathogenicity of antithrombin sequence variations by in silico methods.Thromb. Res.2015135240440910.1016/j.thromres.2014.11.022 25496998
    [Google Scholar]
  54. HicksS. WheelerD.A. PlonS.E. KimmelM. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed.Hum. Mutat.201132666166810.1002/humu.21490 21480434
    [Google Scholar]
  55. RichardsS. AzizN. BaleS. BickD. DasS. Gastier-FosterJ. GrodyW.W. HegdeM. LyonE. SpectorE. VoelkerdingK. RehmH.L. CommitteeA.L.Q.A. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.Genet. Med.201517540542410.1038/gim.2015.30 25741868
    [Google Scholar]
  56. AdzhubeiI.A. SchmidtS. PeshkinL. RamenskyV.E. GerasimovaA. BorkP. KondrashovA.S. SunyaevS.R. A method and server for predicting damaging missense mutations.Nat. Methods20107424824910.1038/nmeth0410‑248 20354512
    [Google Scholar]
  57. KircherM. WittenD.M. JainP. O’RoakB.J. CooperG.M. ShendureJ. A general framework for estimating the relative pathogenicity of human genetic variants.Nat. Genet.201446331031510.1038/ng.2892 24487276
    [Google Scholar]
  58. ChoiY. SimsG.E. MurphyS. MillerJ.R. ChanA.P. Predicting the functional effect of amino acid substitutions and indels.PLoS One2012710e4668810.1371/journal.pone.0046688 23056405
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073308898240607090256
Loading
/content/journals/cchts/10.2174/0113862073308898240607090256
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): fathmm; in silico tools; Missense variant; PolyPhen2; PRRT2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test