Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Antidepressants have adverse effects and induce drug resistance when used excessively or frequently. Therefore, adjuvants are needed to reduce the use of antidepressants during treatment. Traditional Chinese medicine (TCM) is an important adjunctive approach to depression with safety, environmental protection, and low toxicity. Glycyrrhizaglabra (licorice, GG) is a plant commonly used in various herbal remedies.

Method

To explore the potential antidepressant-related targets of Glycyrrhizaglabra (GG) and its underlying mechanisms, we utilized a combination of animal behavioral experiments, molecular biology, and network pharmacology to analyze the antidepressant effects of GG. Initially, we conducted behavioral assays to verify the capacity of GG to mitigate depressive-like behaviors in mice. Subsequently, we selected 56 active compounds and 695 target compounds of licorice from TCMSP. The PPI network screened 80 core targets for enrichment analysis. Lastly, Western blot and ELISA techniques were utilized to authenticate and corroborate the predicting outcomes of PPI and enrichment analysis.

Result

GG extracts reversed lipopolysaccharide (LPS)-induced depression-like behavior in behavioral tests. The results of enrichment analysis showed that,GG significantly affected neurodegeneration pathways, neuroactive ligand-receptor interaction, cAMP signaling pathway, serotonergic synapse, dopaminergic synapse, and MAPK signaling pathway. Mechanistic studies showed that GG reduced IL-1β, IL-6, and TNF-α levels, 5-HTRA1 expression, and GSK3β phosphorylation in mouse hippocampus. It also increased BDNF and DRD1 expression and CREB and ERK1/2 phosphorylation.

Conclusion

Our experimental results demonstrate that GG targets multiple proteins associated with depression, influencing diverse pathways and consequently regulating depressive-like behaviors in mice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073295662240715070530
2024-07-22
2025-10-15
Loading full text...

Full text loading...

References

  1. MuellerT.I. LeonA.C. KellerM.B. SolomonD.A. EndicottJ. CoryellW. WarshawM. MaserJ.D. Recurrence after recovery from major depressive disorder during 15 years of observational follow-up.Am. J. Psychiatry199915671000100610.1176/ajp.156.7.1000 10401442
    [Google Scholar]
  2. LeeS. JeongJ. KwakY. ParkS.K. Depression research: Where are we now?Mol. Brain201031810.1186/1756‑6606‑3‑8 20219105
    [Google Scholar]
  3. ObermannsJ. KrawczykE. JuckelG. EmonsB. Analysis of cytokine levels, T regulatory cells and serotonin content in patients with depression.Eur. J. Neurosci.202153103476348910.1111/ejn.15205 33768559
    [Google Scholar]
  4. AfzalM. KazmiI. QuaziA.M. KhanS.A. ZafarA. Al-AbbasiF.A. ImamF. AlharbiK.S. AlzareaS.I. YadavN. 6-shogaol attenuates traumatic brain injury-induced anxiety/depression-like behavior via inhibition of oxidative stress-influenced expressions of inflammatory mediators TNF-α, IL-1β, and BDNF: Insight into the mechanism.ACS Omega20227114014810.1021/acsomega.1c04155 35036685
    [Google Scholar]
  5. TschumiC.W. BlankenshipH.E. SharmaR. LynchW.B. BecksteadM.J. Neurotensin release from dopamine neurons drives long-term depression of substantia nigra dopamine signaling.J. Neurosci.202242326186619410.1523/JNEUROSCI.1395‑20.2022 35794014
    [Google Scholar]
  6. LiJ. ChenL. LiG. ChenX. HuS. ZhengL. LuriaV. LvJ. SunY. XuY. YuY. Sub-acute treatment of curcumin derivative J147 ameliorates depression-like behavior through 5-HT1A-Mediated cAMP signaling.Front. Neurosci.20201470110.3389/fnins.2020.00701 32733195
    [Google Scholar]
  7. XuX. PiaoH.N. AosaiF. ZengX.Y. ChengJ.H. CuiY.X. LiJ. MaJ. PiaoH.R. JinX. PiaoL.X. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF‐κB and TNF‐α/TNFR1/NF‐κB pathways.Br. J. Pharmacol.2020177225224524510.1111/bph.15261 32964428
    [Google Scholar]
  8. MajM. Helpful treatment of depression-delivering the right messages.JAMA Psychiatry2020778784786
    [Google Scholar]
  9. WangL. YangR. YuanB. LiuY. LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb.Acta Pharm. Sin. B20155431031510.1016/j.apsb.2015.05.005 26579460
    [Google Scholar]
  10. SimmlerC. PauliG.F. ChenS.N. Phytochemistry and biological properties of glabridin.Fitoterapia20139016018410.1016/j.fitote.2013.07.003 23850540
    [Google Scholar]
  11. FanZ.Z. ZhaoW.H. GuoJ. ChengR.F. ZhaoJ.Y. YangW.D. WangY.H. LiW. PengX.D. Antidepressant activities of flavonoids from Glycyrrhiza uralensis and its neurogenesis protective effect in rats.Yao Xue Xue Bao2012471216121617 23460966
    [Google Scholar]
  12. ZhaoX. CaoF. LiuQ. LiX. XuG. LiuG. ZhangY. YangX. YiS. XuF. FanK. MaJ. Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression.Behav. Brain Res.201936449450210.1016/j.bbr.2017.05.064 28572058
    [Google Scholar]
  13. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  14. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: new data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  15. BatemanA. MartinM-J. OrchardS. MagraneM. AgivetovaR. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. BursteinasB. Bye-A-JeeH. CoetzeeR. CukuraA. Da SilvaA. DennyP. DoganT. EbenezerT.G. FanJ. CastroL.G. GarmiriP. GeorghiouG. GonzalesL. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JokinenP. JoshiV. JyothiD. LockA. LopezR. LucianiA. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MenchiM. MishraA. MoulangK. NightingaleA. OliveiraC.S. PundirS. QiG. RajS. RiceD. LopezM.R. SaidiR. SampsonJ. SawfordT. SperettaE. TurnerE. TyagiN. VasudevP. VolynkinV. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA. PouxS. RedaschiN. AimoL. Argoud-PuyG. AuchinclossA. AxelsenK. BansalP. BaratinD. BlatterM-C. BollemanJ. BoutetE. BreuzaL. Casals-CasasC. de CastroE. EchioukhK.C. CoudertE. CucheB. DocheM. DornevilD. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GehantS. GerritsenV. GosA. Gruaz-GumowskiN. HinzU. HuloC. Hyka-NouspikelN. JungoF. KellerG. KerhornouA. LaraV. Le MercierP. LieberherrD. LombardotT. MartinX. MassonP. MorgatA. NetoT.B. PaesanoS. PedruzziI. PilboutS. PourcelL. PozzatoM. PruessM. RivoireC. SigristC. SonessonK. StutzA. SundaramS. TognolliM. VerbregueL. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. GaravelliJ.S. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. YehL-S. ZhangJ. RuchP. TeodoroD. UniProt: The universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa1100 33237286
    [Google Scholar]
  16. RappaportN. FishilevichS. NudelR. TwikM. BelinkyF. PlaschkesI. SteinT.I. CohenD. Oz-LeviD. SafranM. LancetD. Rational confederation of genes and diseases: NGS interpretation via GeneCards, MalaCards and VarElect.Biomed. Eng. Online201716S17210.1186/s12938‑017‑0359‑2 28830434
    [Google Scholar]
  17. AmbergerJ.S. HamoshA. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinformat.2017581.2.11.2.12
    [Google Scholar]
  18. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  19. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  20. BergerM. GrayJ.A. RothB.L. The expanded biology of serotonin.Annu. Rev. Med.200960135536610.1146/annurev.med.60.042307.110802 19630576
    [Google Scholar]
  21. DeoN. RedpathG. Serotonin receptor and transporter endocytosis is an important factor in the cellular basis of depression and anxiety.Front. Cell. Neurosci.20221580459210.3389/fncel.2021.804592 35280519
    [Google Scholar]
  22. AlbertP.R. Le FrançoisB. MillarA.M. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness.Mol. Brain2011412110.1186/1756‑6606‑4‑21 21619616
    [Google Scholar]
  23. GaoF. YangS. WangJ. ZhuG. cAMP-PKA cascade: An outdated topic for depression?Biomed. Pharmacother.202215011303010.1016/j.biopha.2022.113030 35486973
    [Google Scholar]
  24. LonzeB.E. GintyD.D. Function and regulation of CREB family transcription factors in the nervous system.Neuron200235460562310.1016/S0896‑6273(02)00828‑0 12194863
    [Google Scholar]
  25. CastrénE. KojimaM. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments.Neurobiol. Dis.201797Pt B11912610.1016/j.nbd.2016.07.010 27425886
    [Google Scholar]
  26. CutuliD. Sampedro-PiqueroP. BDNF and its role in the alcohol abuse initiated during early adolescence: Evidence from preclinical and clinical studies.Curr. Neuropharmacol.202220112202222010.2174/1570159X20666220624111855 35748555
    [Google Scholar]
  27. LiH. LiuH. ZhangN. ZhuZ. Involvement of the G-protein-coupled receptor 4 in the increased expression of RANK/RANKL/OPG system and neurotrophins by nucleus pulposus cells under the degenerated intervertebral disc-like acidic microenvironment.BioMed Res. Int.2020202011210.1155/2020/1328436 32566653
    [Google Scholar]
  28. TanP. XueT. WangY. HuZ. SuJ. YangR. JiJ. YeM. ChenZ. HuangC. LuX. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice.Neuropharmacology202220910899010.1016/j.neuropharm.2022.108990 35183538
    [Google Scholar]
  29. GaoL. WuC. LiaoY. ZhangS. ZhaoJ. Herba Rhodiolae alleviates depression via the BDNF/TrkB-GSK-3β signaling pathway.Ann. Transl. Med.2021924175810.21037/atm‑21‑5849 35071452
    [Google Scholar]
  30. UmbarkarP. TousifS. SinghA.P. AndersonJ.C. ZhangQ. TallquistM.D. WoodgettJ. LalH. Fibroblast GSK-3α promotes fibrosis via RAF-MEK-ERK pathway in the injured heart.Circ. Res.20221317620636
    [Google Scholar]
  31. ChiuC.H. ChyauC.C. ChenC.C. LeeL.Y. ChenW.P. LiuJ.L. LinW.H. MongM.C. Erinacine A-Enriched Hericium erinaceus Mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice.Int. J. Mol. Sci.201819234110.3390/ijms19020341 29364170
    [Google Scholar]
  32. LazenkaM.F. FreitasK.C. HenckS. NegusS.S. Relief of pain-depressed behavior in rats by activation of D1-like dopamine receptors.J. Pharmacol. Exp. Ther.20173621142310.1124/jpet.117.240796 28411257
    [Google Scholar]
  33. SweattJ.D. Mitogen-activated protein kinases in synaptic plasticity and memory.Curr. Opin. Neurobiol.200414331131710.1016/j.conb.2004.04.001 15194111
    [Google Scholar]
  34. BehlT. RanaT. AlotaibiG.H. ShamsuzzamanM. NaqviM. SehgalA. SinghS. SharmaN. AlmoshariY. AbdellatifA.A.H. IqbalM.S. BhatiaS. Al-HarrasiA. BungauS. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression.Biomed. Pharmacother.202214611254510.1016/j.biopha.2021.112545 34922112
    [Google Scholar]
  35. QiX. LinW. LiJ. PanY. WangW. The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress.Behav. Brain Res.2006175223324010.1016/j.bbr.2006.08.035 17050000
    [Google Scholar]
  36. García-GarcíaM.L. Tovilla-ZárateC.A. Villar-SotoM. Juárez-RojopI.E. González-CastroT.B. Genis-MendozaA.D. Ramos-MéndezM.Á. López-NárvaezM.L. Saucedo-OstiA.S. Ruiz-QuiñonesJ.A. Martinez-MagañaJ.J. Fluoxetine modulates the pro-inflammatory process of IL-6, IL-1β and TNF-α levels in individuals with depression: A systematic review and meta-analysis.Psychiatry Res.202230711431710.1016/j.psychres.2021.114317 34864233
    [Google Scholar]
  37. ZhangQ. QianD. TangD.D. LiuJ. WangL.Y. ChenW. WuC.J. PengW. Glabridin from Glycyrrhiza glabra Possesses a Therapeutic Role against Keloid via Attenuating PI3K/Akt and Transforming Growth Factor-β1/SMAD Signaling Pathways.J. Agric. Food Chem.20227035107821079310.1021/acs.jafc.2c02045 36005946
    [Google Scholar]
  38. LiaqatH. ParveenA. KimS.Y. Neuroprotective natural products’ regulatory effects on depression via gut–brain axis targeting tryptophan.Nutrients20221416327010.3390/nu14163270 36014776
    [Google Scholar]
  39. Serna-RodríguezM.F. Bernal-VegaS. de la BarqueraJ.A.O.S. Camacho-MoralesA. Pérez-MayaA.A. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation.J. Neuroimmunol.202237157795110.1016/j.jneuroim.2022.577951 35994946
    [Google Scholar]
  40. ZhaoF. ChengZ. PiaoJ. CuiR. LiB. Dopamine Receptors: Is it possible to become a therapeutic target for depression?Front. Pharmacol.20221394778510.3389/fphar.2022.947785 36059987
    [Google Scholar]
  41. HartigJ. NemesB. BDNF-related mutations in major depressive disorder: A systematic review.Acta Neuropsychiatr.2022351526 35993165
    [Google Scholar]
  42. HosseinzadehH. Nassiri-AslM. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review.Phytother. Res.201529121868188610.1002/ptr.5487 26462981
    [Google Scholar]
  43. BurkeD.A. AlvarezV.A. Serotonin receptors contribute to dopamine depression of lateral inhibition in the nucleus accumbens.Cell Rep.202239611079510.1016/j.celrep.2022.110795 35545050
    [Google Scholar]
  44. Kosari-NasabM. ShokouhiG. AzarfarinM. Bannazadeh AmirkhizM. Mesgari AbbasiM. SalariA.A. Serotonin 5-HT1A receptors modulate depression-related symptoms following mild traumatic brain injury in male adult mice.Metab. Brain Dis.201934257558210.1007/s11011‑018‑0366‑4 30607822
    [Google Scholar]
  45. NautiyalK.M. HenR. Serotonin receptors in depression: From A to B.F1000 Res.2017612310.12688/f1000research.9736.1 28232871
    [Google Scholar]
  46. KendrickT. CollinsonS. Antidepressants and the serotonin hypothesis of depression.BMJ2022378o199310.1136/bmj.o1993 35970554
    [Google Scholar]
  47. UnderwoodM.D. KassirS.A. BakalianM.J. GalfalvyH. DworkA.J. MannJ.J. ArangoV. Serotonin receptors and suicide, major depression, alcohol use disorder and reported early life adversity.Transl. Psychiatry20188127910.1038/s41398‑018‑0309‑1 30552318
    [Google Scholar]
  48. ZhangZ.J. WangD. ManS.C. NgR. McAlonanG.M. WongH.K. WongW. LeeJ. TanQ.R. Platelet 5-HT1A receptor correlates with major depressive disorder in drug-free patients.Prog. Neuropsychopharmacol. Biol. Psychiatry201453747910.1016/j.pnpbp.2014.03.004 24657886
    [Google Scholar]
  49. DavidO. BarreraI. GouldN. Gal-Ben-AriS. RosenblumK. D1 Dopamine Receptor Activation Induces Neuronal eEF2 Pathway-Dependent Protein Synthesis.Front. Mol. Neurosci.2020136710.3389/fnmol.2020.00067 32499677
    [Google Scholar]
  50. WangB. ChenT. LiG. JiaY. WangJ. XueL. ChenY. Dopamine alters lipopolysaccharide-induced nitric oxide production in microglial cells via activation of D1-Like Receptors.Neurochem. Res.201944494795810.1007/s11064‑019‑02730‑7 30659504
    [Google Scholar]
  51. OlianasM.C. DedoniS. OnaliP. Coincidence signaling of dopamine D1-like and M1 muscarinic receptors in the regulation of cyclic AMP formation and CREB phosphorylation in mouse prefrontal cortex.Neurosignals2013211-2617410.1159/000335208 22456324
    [Google Scholar]
  52. YaoY. YangD. HanY. WangW. WangN. YangJ. ZengC. Dopamine D1-like receptors suppress the proliferation of macrophages induced by Ox-LDL.Cell. Physiol. Biochem.201638141542610.1159/000438640 26824460
    [Google Scholar]
  53. ClaussN. AllenK.B. BillingsK.D. TolliverM.D.M. GarzaR. Byrd-CravenJ. CampbellP. The modification of offspring stress-related behavior and the expression of Drd1, Drd2, and Nr3c1 by a Western-Pattern Diet in Mus Musculus.Int. J. Mol. Sci.20222316924510.3390/ijms23169245 36012509
    [Google Scholar]
  54. YanQ. WuX. ZhouP. ZhouY. LiX. LiuZ. TanH. YaoW. XiaY. ZhuF. HERV-W envelope triggers abnormal dopaminergic neuron process through DRD2/PP2A/AKT1/GSK3 for schizophrenia risk.Viruses202214114510.3390/v14010145 35062349
    [Google Scholar]
  55. ChangB. LiuY. HuJ. TangZ. QiuZ. SongZ. JiaA. ZhangY. Bupleurum chinense DC improves CUMS-induced depressive symptoms in rats through upregulation of the cAMP/PKA/CREB signalling pathway.J. Ethnopharmacol.202228911503410.1016/j.jep.2022.115034 35092825
    [Google Scholar]
  56. ZhangR. GuoL. JiZ. LiX. ZhangC. MaZ. FuQ. QuR. MaS. Radix scutellariae attenuates CUMS-induced depressive-like behavior by promoting neurogenesis via cAMP/PKA Pathway.Neurochem. Res.201843112111212010.1007/s11064‑018‑2635‑3 30259256
    [Google Scholar]
  57. YuH. ShaoS. XuJ. GuoH. ZhongZ. XuJ. Persimmon leaf extract alleviates chronic social defeat stress-induced depressive-like behaviors by preventing dendritic spine loss via inhibition of serotonin reuptake in mice.Chin. Med.20221716510.1186/s13020‑022‑00609‑4 35668445
    [Google Scholar]
  58. CaiM. YangZ. HuangX. LiJ. BaoW. Hurilebagen; Wulanqiqige; Wuyunsiriguleng; Cui, J.; Ma, L.; Tong, H. Mongolian Medicine Areca Thirteen Pill (GY-13) improved depressive syndrome via upregulating cAMP/PKA/CREB/BDNF signaling pathway.J. Ethnopharmacol.202229311531010.1016/j.jep.2022.115310 35452773
    [Google Scholar]
  59. HuM. WangA. ZhaoZ. ChenX. LiY. LiuB. Antidepressant-like effects of paeoniflorin on post-stroke depression in a rat model.Neurol. Res.201941544645510.1080/01616412.2019.1576361 30759063
    [Google Scholar]
  60. LiuY. HuZ. WangJ. LiaoY. ShuL. Puerarin alleviates depressive-like behaviors in high-fat diet-induced diabetic mice via modulating hippocampal GLP-1R/BDNF/TrkB signaling.Nutr. Neurosci.202226109971010 36039913
    [Google Scholar]
  61. BirmannP.T. CasarilA.M. ZugnoG.P. AcostaG.G. Severo Sabedra SousaF. CollaresT. SeixasF.K. JacobR.G. BrüningC.A. SavegnagoL. HartwigD. Flower essential oil of Tagetes minuta mitigates oxidative stress and restores BDNF-Akt/ERK2 signaling attenuating inflammation- and stress-induced depressive-like behavior in mice.Brain Res.2022178414784510.1016/j.brainres.2022.147845 35219720
    [Google Scholar]
  62. LiH. Linjuan-Li; Wang, Y. G-CSF improves CUMS-induced depressive behaviors through downregulating Ras/ERK/MAPK signaling pathway.Biochem. Biophys. Res. Commun.2016479482783210.1016/j.bbrc.2016.09.123 27680311
    [Google Scholar]
  63. LiJ. LuoY. ZhangR. ShiH. ZhuW. ShiJ. Neuropeptide trefoil factor 3 reverses depressive-like behaviors by activation of BDNF-ERK-CREB signaling in olfactory bulbectomized rats.Int. J. Mol. Sci.20151612283862840010.3390/ijms161226105 26633367
    [Google Scholar]
  64. MaiL. JopeR.S. LiX. BDNF‐mediated signal transduction is modulated by GSK3β and mood stabilizing agents.J. Neurochem.2002821758310.1046/j.1471‑4159.2002.00939.x 12091467
    [Google Scholar]
  65. PanY. ChenX.Y. ZhangQ.Y. KongL.D. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats.Brain Behav. Immun.2014419010010.1016/j.bbi.2014.04.007 24859041
    [Google Scholar]
  66. AriozB.I. TastanB. TarakciogluE. TufekciK.U. OlcumM. ErsoyN. BagriyanikA. GencK. GencS. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway.Front. Immunol.201910151110.3389/fimmu.2019.01511 31327964
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073295662240715070530
Loading
/content/journals/cchts/10.2174/0113862073295662240715070530
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test