Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Sex hormones are important factors in maintaining brain function and acting as brain protectors. Recent research suggests that neuronal damage in brain aging may be linked to the methylation of the estrogen receptor α (ERα). However, the mechanism of Zuogui Pills (ZGW) in brain-aging ERα DNA methylation and neuronal repair remains unknown.

Methods

D-galactose-induced ovary removal mice were used as a model of aging. Changes in estrous cycle were detected in mice by vaginal cell smear. Animal behavior tests, including the Morris water maze (MWM) and new object recognition (NOR) test, were conducted. Hematoxylin-eosin (HE) and Nissl-staining were carried out to assess hippocampal neurogenesis. Enzyme-linked immunosorbent assay (ELISA) was performed for 5-methylcytosine methylation levels, and immunohistochemistry (IHC) and western blotting (WB) experiments were performed to assess ERα/DNA methyltransferase 1 (DNMT1) expression after ZGW treatment. Finally, bisulfite sequencing PCR (BSP) analysis was performed to identify methylated differentially expressed estrogen receptor 1 () gene in D-gal-induced senescent neurons before and after ZGW treatment.

Results

We found that ERα methylation was involved in the delayed brain ageing process of ZGW. Mechanistically, ZGW can improve the learning and memory ability of brain-aging mice, reduce the expression of 5-methylcytosine (5-mc) in serum, increase the amount of ERα, inhibit the expression of DNMT1, and significantly reduce methylated expression of the gene.

Conclusion

Our data suggested that ZGW slowed down D-gal-induced brain aging in mice, and these results showed that ZGW is beneficial for aging. It may be used for neuronal protection in aging.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073306093240820113714
2024-09-03
2025-11-04
Loading full text...

Full text loading...

References

  1. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. Hallmarks of aging: An expanding universe.Cell2023186224327810.1016/j.cell.2022.11.001 36599349
    [Google Scholar]
  2. ImbertI. Biomarkers and Aging.Biomarkers Med.20148562162310.2217/bmm.14.40 25123029
    [Google Scholar]
  3. HouY. DanX. BabbarM. WeiY. HasselbalchS.G. CroteauD.L. BohrV.A. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  4. MaioliS. LeanderK. NilssonP. NalvarteI. Estrogen receptors and the aging brain.Essays Biochem.202165691392510.1042/EBC20200162 34623401
    [Google Scholar]
  5. ReubenR. KarkabyL. McNameeC. PhillipsN.A. EinsteinG. Menopause and cognitive complaints: Are ovarian hormones linked with subjective cognitive decline?Climacteric202124432133210.1080/13697137.2021.1892627 33719785
    [Google Scholar]
  6. SochockaM. KarskaJ. PszczołowskaM. OchnikM. FułekM. FułekK. KurpasD. Chojdak-ŁukasiewiczJ. Rosner-TenerowiczA. LeszekJ. Cognitive decline in early and premature menopause.Int. J. Mol. Sci.2023247656610.3390/ijms24076566 37047549
    [Google Scholar]
  7. MorganK.N. DerbyC.A. GleasonC.E. Cognitive changes with reproductive aging, perimenopause, and menopause.Obstet. Gynecol. Clin. North Am.201845475176310.1016/j.ogc.2018.07.011 30401555
    [Google Scholar]
  8. HaraY. WatersE.M. McEwenB.S. MorrisonJ.H. Estrogen effects on cognitive and synaptic health over the lifecourse.Physiol. Rev.201595378580710.1152/physrev.00036.2014 26109339
    [Google Scholar]
  9. PantiyaP. ThonusinC. OngnokB. ChunchaiT. KongkaewA. NawaraW. ArunsakB. ChattipakornN. ChattipakornS.C. Chronic D-galactose administration induces natural aging characteristics, in rat’s brain and heart.Toxicology202349215355310.1016/j.tox.2023.153553 37225035
    [Google Scholar]
  10. AzmanK.F. ZakariaR. d-Galactose-induced accelerated aging model: An overview.Biogerontology201920676378210.1007/s10522‑019‑09837‑y 31538262
    [Google Scholar]
  11. ShweT. PratchayasakulW. ChattipakornN. ChattipakornS.C. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions.Exp. Gerontol.2018101133610.1016/j.exger.2017.10.029 29129736
    [Google Scholar]
  12. HaraY. ParkCS. JanssenWG. RobertsMT. MorrisonJH. RappPR. Synaptic correlates of memory and menopause in the hippocampal dentate gyrus in rhesus monkeys.Neurobiol Aging2012332421.e17-2810.1016/j.neurobiolaging.2010.09.014
    [Google Scholar]
  13. GibbsR.B. ChipmanA.M. HammondR. NelsonD. Galanthamine plus estradiol treatment enhances cognitive performance in aged ovariectomized rats.Horm. Behav.201160560761610.1016/j.yhbeh.2011.08.010 21889940
    [Google Scholar]
  14. GibbsR.B. MaukR. NelsonD. JohnsonD.A. Donepezil treatment restores the ability of estradiol to enhance cognitive performance in aged rats: Evidence for the cholinergic basis of the critical period hypothesis.Horm. Behav.2009561738310.1016/j.yhbeh.2009.03.003 19303882
    [Google Scholar]
  15. Sahab-NegahS. HajaliV. MoradiH.R. GorjiA. The impact of estradiol on neurogenesis and cognitive functions in alzheimer’s disease.Cell. Mol. Neurobiol.202040328329910.1007/s10571‑019‑00733‑0 31502112
    [Google Scholar]
  16. Ycaza HerreraA. MatherM. Actions and interactions of estradiol and glucocorticoids in cognition and the brain: Implications for aging women.Neurosci. Biobehav. Rev.201555365210.1016/j.neubiorev.2015.04.005 25929443
    [Google Scholar]
  17. McClureR.E.S. BarhaC.K. GaleaL.A.M. 17β-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats.Horm. Behav.201363114415710.1016/j.yhbeh.2012.09.011 23063473
    [Google Scholar]
  18. RussellJ.K. JonesC.K. NewhouseP.A. The role of estrogen in brain and cognitive aging.Neurotherapeutics201916364966510.1007/s13311‑019‑00766‑9 31364065
    [Google Scholar]
  19. MitterlingK.L. SpencerJ.L. DziedzicN. ShenoyS. McCarthyK. WatersE.M. McEwenB.S. MilnerT.A. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus.J. Comp. Neurol.2010518142729274310.1002/cne.22361 20506473
    [Google Scholar]
  20. GegenhuberB. WuM.V. BronsteinR. TollkuhnJ. Gene regulation by gonadal hormone receptors underlies brain sex differences.Nature2022606791215315910.1038/s41586‑022‑04686‑1 35508660
    [Google Scholar]
  21. Bustamante-BarrientosF.A. Méndez-RuetteM. OrtloffA. Luz-CrawfordP. RiveraF.J. FigueroaC.D. MolinaL. BátizL.F. The impact of estrogen and estrogen-like molecules in neurogenesis and neurodegeneration: Beneficial or harmful?Front. Cell. Neurosci.20211563617610.3389/fncel.2021.636176 33762910
    [Google Scholar]
  22. AzcoitiaI. YagueJ.G. Garcia-SeguraL.M. Estradiol synthesis within the human brain.Neuroscience201119113914710.1016/j.neuroscience.2011.02.012 21320576
    [Google Scholar]
  23. WilsonM.E. WestberryJ.M. PrewittA.K. Dynamic regulation of estrogen receptor-alpha gene expression in the brain: A role for promoter methylation?Front. Neuroendocrinol.200829337538510.1016/j.yfrne.2008.03.002 18439661
    [Google Scholar]
  24. DubalD.B. RauS.W. ShughrueP.J. ZhuH. YuJ. CashionA.B. SuzukiS. GerholdL.M. BottnerM.B. DubalS.B. MerchanthalerI. KindyM.S. WiseP.M. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: A role for ERalpha in estradiol-mediated protection against delayed cell death.Endocrinology200614763076308410.1210/en.2005‑1177 16527848
    [Google Scholar]
  25. IanovL. KumarA. FosterT.C. Epigenetic regulation of estrogen receptor α contributes to age-related differences in transcription across the hippocampal regions CA1 and CA3.Neurobiol. Aging201749798510.1016/j.neurobiolaging.2016.09.013 27776265
    [Google Scholar]
  26. YangT. SunY. LuZ. LeakR.K. ZhangF. The impact of cerebrovascular aging on vascular cognitive impairment and dementia.Ageing Res. Rev.201734152910.1016/j.arr.2016.09.007 27693240
    [Google Scholar]
  27. LiuH. ZhongL. DaiQ. YangJ. ZhangY. ZhangB. JiangY. Zuoguiwan ameliorates cognitive deficits and neuro-inflammation in streptozotocin-induced alzheimer’s disease rats.Neuroimmunomodulation2022291636910.1159/000516396 34320500
    [Google Scholar]
  28. SunX. SongH. WenJ. HuY. ZhangM. LiW. DingZ. Research on serum metabolomics of ovariectomized rats and intervention effect of Cuscuta chinensis on metabolic pattern.J. Pharm. Biomed. Anal.202119511384710.1016/j.jpba.2020.113847 33358618
    [Google Scholar]
  29. KeJ. DuanR. Effects of flavonoids from semen cuscutae on the hippocampal-hypothalamic-pituitary-ovarian sex hormone receptors in female rats exposed to psychological stress.Clin. Exp. Obstet. Gynecol.2013402271274 23971257
    [Google Scholar]
  30. CostaL.G. GarrickJ.M. RoquèP.J. PellacaniC. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more.Oxid. Med. Cell. Longev.2016201611010.1155/2016/2986796 26904161
    [Google Scholar]
  31. ZargarS. WaniT. Protective role of quercetin in carbon tetrachloride induced toxicity in rat brain: Biochemical, spectrophotometric assays and computational approach.Molecules20212624752610.3390/molecules26247526 34946608
    [Google Scholar]
  32. LiuH. DaiQ. YangJ. ZhangY. ZhangB. ZhongL. Zuogui pill attenuates neuroinflammation and improves cognitive function in cerebral ischemia reperfusion-injured rats.Neuroimmunomodulation202229214315010.1159/000519010 34736255
    [Google Scholar]
  33. LiuH. HuangY. YangJ. XuX. DaiQ. ZhangY. ZhaoL. ZhangM. ZhangJ. LiuT. ZhongL. Involvement of estrogen receptor activation in kaempferol-3-O-glucoside’s protection against aging-related cognition impairment and microglial inflammation.Exp. Cell Res.2023433211384910.1016/j.yexcr.2023.113849 37926343
    [Google Scholar]
  34. DesjobertC. El MaïM. Gérard-HirneT. Guianvarc’hD. CarrierA. PottierC. ArimondoP.B. RiondJ. Combined analysis of DNA methylation and cell cycle in cancer cells.Epigenetics2015101829110.1080/15592294.2014.995542 25531272
    [Google Scholar]
  35. YangX. LayF. HanH. JonesP.A. Targeting DNA methylation for epigenetic therapy.Trends Pharmacol. Sci.2010311153654610.1016/j.tips.2010.08.001 20846732
    [Google Scholar]
  36. DastjerdiM. BabazadehZ. SalehiM. HashemibeniB. KazemiM. Comparison of the anti-cancer effect of disulfiram and 5-Aza-CdR on pancreatic cancer cell line PANC-1.Adv. Biomed. Res.20143115610.4103/2277‑9175.137866 25221759
    [Google Scholar]
  37. SanaeiM. KavoosiF. NasiriS. Effect of 5-aza-2ˈ-deoxycytidine on p27Kip1, p21Cip1/Waf1/Sdi1, p57Kip2, and DNA methyltransferase 1 Genes Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer SW 480 and SW 948 Cell Lines.Galen Med. J.20209e189910.31661/gmj.v9i0.1899 34466608
    [Google Scholar]
  38. RouloisD. Loo YauH. SinghaniaR. WangY. DaneshA. ShenS.Y. HanH. LiangG. JonesP.A. PughT.J. O’BrienC. De CarvalhoD.D. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts.Cell2015162596197310.1016/j.cell.2015.07.056 26317465
    [Google Scholar]
  39. MossmanD. KimK.T. ScottR.J. Demethylation by 5-aza-2′-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists.BMC Cancer201010136610.1186/1471‑2407‑10‑366 20618997
    [Google Scholar]
  40. LiL. LiuY. ZhengY. ZhuJ. WuD. YanX. LiC. WuM. LiW. Exploring the mechanisms under Zuogui Pill’s treatment of ischemic stroke through network pharmacology and in vitro experimental verification.Front. Pharmacol.202314115347810.3389/fphar.2023.1153478 37426810
    [Google Scholar]
  41. ZhangZ. YangJ. LiuX. JiaX. XuS. GongK. YanS. ZhangC. ShaoG. Effects of 5-Aza-2′-deoxycytidine on expression of PP1γ in learning and memory.Biomed. Pharmacother.20168427728310.1016/j.biopha.2016.09.024 27665473
    [Google Scholar]
  42. ChangZ. XuW. JiangS. LiuX. ZhuH. WangP. GaoB. GongK. GuoG. SunK. ZhangC. HanR. ShaoG. Effects of 5-Aza on neurogenesis contribute to learning and memory in the mouse hippocampus.Biomed. Pharmacother.202215411362310.1016/j.biopha.2022.113623 36081289
    [Google Scholar]
  43. GopalanC. HegadeG.M. BayT.N. BrownS.R. TalcottM.R. Tribromoethanol-medetomidine combination provides a safe and reversible anesthetic effect in Sprague-Dawley rats.Contemp. Top. Lab. Anim. Sci.2005441710 15697191
    [Google Scholar]
  44. IdrisA.I. Ovariectomy/orchidectomy in rodents.Methods Mol. Biol.201281654555110.1007/978‑1‑61779‑415‑5_34 22130951
    [Google Scholar]
  45. LiuC. WuJ. LiM. GaoR. ZhangX. Ye-LehmannS. SongJ. ZhuT. ChenC. Smad7 in the hippocampus contributes to memory impairment in aged mice after anesthesia and surgery.J. Neuroinflammation202320117510.1186/s12974‑023‑02849‑z 37507781
    [Google Scholar]
  46. BarryD.N. MaguireE.A. Remote memory and the hippocampus: A constructive critique.Trends Cogn. Sci.201923212814210.1016/j.tics.2018.11.005 30528612
    [Google Scholar]
  47. HuaX. LeiM. ZhangY. DingJ. HanQ. HuG. XiaoM. Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease.Life Sci.200780201897190510.1016/j.lfs.2007.02.030 17391708
    [Google Scholar]
  48. IbrahimW.W. Skalicka-WoźniakK. BudzyńskaB. El SayedN.S. NLRP3 inflammasome inhibition and M1-to-M2 microglial polarization shifting via scoparone-inhibited TLR4 axis in ovariectomy/D-galactose Alzheimer’s disease rat model.Int. Immunopharmacol.202311911023910.1016/j.intimp.2023.110239 37137264
    [Google Scholar]
  49. IbrahimW.W. AbdelkaderN.F. IsmailH.M. KhattabM.M. Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: Modulation of JNK, GSK-3β, and ERK signalling pathways.Sci. Rep.2019911005610.1038/s41598‑019‑46558‑1 31296935
    [Google Scholar]
  50. IbrahimW.W. KamelA.S. WahidA. AbdelkaderN.F. Dapagliflozin as an autophagic enhancer via LKB1/AMPK/SIRT1 pathway in ovariectomized/d-galactose Alzheimer’s rat model.Inflammopharmacology20223062505252010.1007/s10787‑022‑00973‑5 35364737
    [Google Scholar]
  51. Abd El-FatahI.M. AbdelrazekH.M.A. IbrahimS.M. AbdallahD.M. El-AbharH.S. Dimethyl fumarate abridged tauo-/amyloidopathy in a D-Galactose/ovariectomy-induced Alzheimer’s-like disease: Modulation of AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3β, adiponectin/Adipo1R, and NF-κB/IL-1β/ROS trajectories.Neurochem. Int.202114810508210.1016/j.neuint.2021.105082 34052296
    [Google Scholar]
  52. TaoY.Q. LiangG.B. Pathologic changes and dysfunctions of astrocytes in the complex rat AD model of ovariectomy combined with D-galactose injection.Bratisl. Med. J.20141151169269810.4149/BLL_2014_134 25428537
    [Google Scholar]
  53. IbrahimW.W. IsmailH.M. KhattabM.M. AbdelkaderN.F. Cognitive enhancing effect of diapocynin in D-galactose-ovariectomy-induced Alzheimer’s-like disease in rats: Role of ERK, GSK-3β, and JNK signaling.Toxicol. Appl. Pharmacol.202039811502810.1016/j.taap.2020.115028 32360636
    [Google Scholar]
  54. MansourH.M. FawzyH.M. El-KhatibA.S. KhattabM.M. Inhibition of mitochondrial pyruvate carrier 1 by lapatinib ditosylate mitigates Alzheimer’s-like disease in D-galactose/ovariectomized rats.Neurochem. Int.202115010517810.1016/j.neuint.2021.105178 34481907
    [Google Scholar]
  55. SatoK. TakayamaK. InoueS. Expression and function of estrogen receptors and estrogen-related receptors in the brain and their association with Alzheimer’s disease.Front. Endocrinol. (Lausanne)202314122015010.3389/fendo.2023.1220150 37469978
    [Google Scholar]
  56. XieY. SongA. ZhuY. JiangA. PengW. ZhangC. MengX. Effects and mechanisms of probucol on aging-related hippocampus-dependent cognitive impairment.Biomed. Pharmacother.202114411226610.1016/j.biopha.2021.112266 34634555
    [Google Scholar]
  57. BrannD.W. LuY. WangJ. SareddyG.R. PratapU.P. ZhangQ. TekmalR.R. VadlamudiR.K. Neuron-derived estrogen—a key neuromodulator in synaptic function and memory.Int. J. Mol. Sci.202122241324210.3390/ijms222413242 34948039
    [Google Scholar]
  58. SimpkinsJ.W. GreenP.S. GridleyK.E. SinghM. de FiebreN.C. RajakumarG. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease.Am. J. Med.1997103319S25S10.1016/S0002‑9343(97)00260‑X 9344403
    [Google Scholar]
  59. HabibiP. BabriS. AhmadiaslN. YousefiH. Effects of genistein and swimming exercise on spatial memory and expression of microRNA 132, BDNF, and IGF-1 genes in the hippocampus of ovariectomized rats.Iran. J. Basic Med. Sci.2017208856862 29085576
    [Google Scholar]
  60. LiuH. ZhongL. ZhangY. LiuX. LiJ. Rutin attenuates cerebral ischemia–reperfusion injury in ovariectomized rats via estrogen-receptor-mediated BDNF–TrkB and NGF–TrkA signaling.Biochem. Cell Biol.201896567268110.1139/bcb‑2017‑0209 29420916
    [Google Scholar]
  61. SantiagoM. AntunesC. GuedesM. IacovinoM. KybaM. ReikW. SousaN. PintoL. BrancoM.R. MarquesC.J. Tet3 regulates cellular identity and DNA methylation in neural progenitor cells.Cell. Mol. Life Sci.202077142871288310.1007/s00018‑019‑03335‑7 31646359
    [Google Scholar]
  62. ZocherS. OverallR.W. Berdugo-VegaG. RundN. KarasinskyA. AdusumilliV.S. SteinhauerC. ScheibenstockS. HändlerK. SchultzeJ.L. CalegariF. KempermannG. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis.EMBO J.20214018e10710010.15252/embj.2020107100 34337766
    [Google Scholar]
  63. BersonA. NativioR. BergerS.L. BoniniN.M. Epigenetic regulation in neurodegenerative diseases.Trends Neurosci.201841958759810.1016/j.tins.2018.05.005 29885742
    [Google Scholar]
  64. SchübelerD. Function and information content of DNA methylation.Nature2015517753432132610.1038/nature14192 25592537
    [Google Scholar]
  65. NoackF. VangelistiS. RafflG. CaridoM. DiwakarJ. ChongF. BonevB. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler.Nat. Neurosci.202225215416710.1038/s41593‑021‑01002‑4 35132236
    [Google Scholar]
  66. SealeK. HorvathS. TeschendorffA. EynonN. VoisinS. Making sense of the ageing methylome.Nat. Rev. Genet.2022231058560510.1038/s41576‑022‑00477‑6 35501397
    [Google Scholar]
  67. WangK. LiuH. HuQ. WangL. LiuJ. ZhengZ. ZhangW. RenJ. ZhuF. LiuG.H. Epigenetic regulation of aging: Implications for interventions of aging and diseases.Signal Transduct. Target. Ther.20227137410.1038/s41392‑022‑01211‑8 36336680
    [Google Scholar]
  68. OliveiraA.M.M. HemstedtT.J. BadingH. Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities.Nat. Neurosci.20121581111111310.1038/nn.3151 22751036
    [Google Scholar]
  69. GontierG. IyerM. SheaJ.M. BieriG. WheatleyE.G. Ramalho-SantosM. VilledaS.A. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain.Cell Rep.20182281974198110.1016/j.celrep.2018.02.001 29466726
    [Google Scholar]
  70. Buck-KoehntopB.A. DefossezP.A. On how mammalian transcription factors recognize methylated DNA.Epigenetics20138213113710.4161/epi.23632 23324617
    [Google Scholar]
  71. KumarS. ChinnusamyV. MohapatraT. Epigenetics of modified DNA bases: 5-Methylcytosine and beyond.Front. Genet.2018964010.3389/fgene.2018.00640 30619465
    [Google Scholar]
  72. EllisonE.M. AbnerE.L. LovellM.A. Multiregional analysis of global 5‐methylcytosine and 5‐hydroxymethylcytosine throughout the progression of Alzheimer’s disease.J. Neurochem.2017140338339410.1111/jnc.13912 27889911
    [Google Scholar]
  73. ChaiZ. WuZ. JiQ. WangJ. WangJ. WangH. ZhangC. ZhongJ. XinJ. Genome-wide DNA methylation and hydroxymethylation changes revealed epigenetic regulation of neuromodulation and myelination in Yak hypothalamus.Front. Genet.20211259213510.3389/fgene.2021.592135 34646294
    [Google Scholar]
  74. SchoutenM. BielefeldP. Garcia-CorzoL. PasschierE.M.J. GradariS. JungenitzT. Pons-EspinalM. GebaraE. Martín-SuárezS. LucassenP.J. De VriesH.E. TrejoJ.L. SchwarzacherS.W. De Pietri TonelliD. ToniN. MiraH. EncinasJ.M. FitzsimonsC.P. Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in the aging brain.Mol. Psychiatry20202571382140510.1038/s41380‑019‑0440‑2 31222184
    [Google Scholar]
  75. McCauleyB.S. SunL. YuR. LeeM. LiuH. LeemanD.S. HuangY. WebbA.E. DangW. Altered chromatin states drive cryptic transcription in aging mammalian stem cells.Nature Aging20211868469710.1038/s43587‑021‑00091‑x 34746802
    [Google Scholar]
  76. WagnerM. SteinbacherJ. KrausT.F.J. MichalakisS. HacknerB. PfaffenederT. PereraA. MüllerM. GieseA. KretzschmarH.A. CarellT. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues.Angew. Chem. Int. Ed.20155442125111251410.1002/anie.201502722 26137924
    [Google Scholar]
  77. ListerR. MukamelE.A. NeryJ.R. UrichM. PuddifootC.A. JohnsonN.D. LuceroJ. HuangY. DworkA.J. SchultzM.D. YuM. Tonti-FilippiniJ. HeynH. HuS. WuJ.C. RaoA. EstellerM. HeC. HaghighiF.G. SejnowskiT.J. BehrensM.M. EckerJ.R. Global epigenomic reconfiguration during mammalian brain development.Science20133416146123790510.1126/science.1237905 23828890
    [Google Scholar]
  78. ArgyrousiE.K. de NijsL. LagattaD.C. SchlütterA. WeidnerM.T. ZöllerJ. van GoethemN.P. JocaS.R.L. van den HoveD.L.A. PrickaertsJ. Effects of DNA methyltransferase inhibition on pattern separation performance in mice.Neurobiol. Learn. Mem.201915961510.1016/j.nlm.2019.02.003 30731235
    [Google Scholar]
  79. SunH.Y. QuQ.M. Hypermethylation of ERa-A gene and high serum homocysteine level are correlated with cognitive impairment in white matter hyperintensity patients.QJM2019112535135410.1093/qjmed/hcz031 30690641
    [Google Scholar]
  80. WangY. ChenC. HuangW. HuangM. WangJ. ChenX. YeQ. Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity.Aging (Albany NY)201911208937895010.18632/aging.102357 31634150
    [Google Scholar]
  81. SureshS.N. ChavalmaneA.K. PillaiM. AmmanathanV. VidyadharaD.J. YarreiphangH. RaiS. PaulA. ClementJ.P. AlladiP.A. ManjithayaR. Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective.Front. Mol. Neurosci.20181110910.3389/fnmol.2018.00109 29686608
    [Google Scholar]
  82. YeL. HuangJ. XiangX. SongS. HuangG. RuanY. WuS. 17β-Estradiol alleviates cardiac aging induced by d-galactose by downregulating the methylation of autophagy-related genes.Steroids202117010882910.1016/j.steroids.2021.108829 33811924
    [Google Scholar]
  83. KovácsT. Szabó-MelegE. ÁbrahámI.M. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression.Int. J. Mol. Sci.2020219317710.3390/ijms21093177 32365920
    [Google Scholar]
  84. BeanL.A. IanovL. FosterT.C. Estrogen receptors, the hippocampus, and memory.Neuroscientist201420553454510.1177/1073858413519865 24510074
    [Google Scholar]
  85. SchwarzJ.M. NugentB.M. McCarthyM.M. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span.Endocrinology2010151104871488110.1210/en.2010‑0142 20702577
    [Google Scholar]
  86. MatteiA.L. BaillyN. MeissnerA. DNA methylation: A historical perspective.Trends Genet.202238767670710.1016/j.tig.2022.03.010 35504755
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073306093240820113714
Loading
/content/journals/cchts/10.2174/0113862073306093240820113714
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-aging; DNA methylation; ERα; ESRI gene; Memory; Zuogui pill
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test