Skip to content
2000
Volume 28, Issue 14
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Glioblastoma (GBM) severely disrupts the quality of life of patients. Anoikis represents a significant mechanism in cancer invasion and metastasis. Our study focused on the prognostic relationship between the anoikis-associated gene and GBM and its effect on GBM cell progression.

Methods

We downloaded 656 and 979 GBM sample data from TCGA and CGGA cohort datasets, respectively. Fifteen anoikis-associated genes were obtained from the GeneCards database and were subsequently clustered to identify differential genes associated with them. After univariate analysis and survival random forest dimensionality reduction, the anoikis score was the sum of the coefficients * gene expression values of the five prognostic genes. Survival analysis and ROC curve analysis of anoikis scores were performed using the TCGA training and CGGA validation sets. The prognostic factors were analyzed using Cox regression analysis in GBM. Moreover, CCK-8, colony formation, wound healing, and transwell assay were used to evaluate GBM cell proliferation and migration.

Results

Significant differences were observed in the 5-year survival of GBM patients between the two subgroups. Then, our analysis demonstrated that high OCIAD2, FTLP3, IGFBP2, and H19 levels were associated with lower 5-year GBM survival rates, whereas high SFRP2 levels were associated with higher survival rates. Univariate Cox analysis indicated that GBM risk was linked to both anoikis score and grade, while multivariate Cox analysis indicated that GBM risk was associated with both anoikis score and age. Additionally, OCIAD2 was highly expressed in U251MG and T98G cells. Moreover, OCIAD2 silencing inhibited GBM cell proliferation and migration.

Conclusion

This study demonstrated the potential of the anoikis-associated gene OCIAD2 as a prognostic biomarker for GBM. Furthermore, we validated that OCIAD2 promoted GBM cell progression. OCIAD2 silencing inhibited GBM cell proliferation and migration.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073305357240719070044
2024-07-29
2025-11-03
Loading full text...

Full text loading...

References

  1. Abou-AntounT.J. HaleJ.S. LathiaJ.D. DombrowskiS.M. Brain cancer stem cells in adults and children: Cell biology and therapeutic implications.Neurotherapeutics201714237238410.1007/s13311‑017‑0524‑0 28374184
    [Google Scholar]
  2. JacobF. SalinasR.D. ZhangD.Y. NguyenP.T.T. SchnollJ.G. WongS.Z.H. ThokalaR. SheikhS. SaxenaD. ProkopS. LiuD. QianX. PetrovD. LucasT. ChenH.I. DorseyJ.F. ChristianK.M. BinderZ.A. NasrallahM. BremS. O’RourkeD.M. MingG. SongH. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity.Cell20201801188204.e2210.1016/j.cell.2019.11.036 31883794
    [Google Scholar]
  3. AbbruzzeseC. PersicoM. MatteoniS. PaggiM.G. Molecular biology in glioblastoma multiforme treatment.Cells20221111185010.3390/cells11111850 35681545
    [Google Scholar]
  4. KhabibovM. GarifullinA. BoumberY. KhaddourK. FernandezM. KhamitovF. KhalikovaL. KuznetsovaN. KitO. KharinL. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review).Int. J. Oncol.20226066910.3892/ijo.2022.5359 35445737
    [Google Scholar]
  5. OstromQ.T. PatilN. CioffiG. WaiteK. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017.Neuro-oncol.20202212Suppl. 1iv1iv9610.1093/neuonc/noaa200 33123732
    [Google Scholar]
  6. LiZ. ZhangJ. ZhengH. LiC. XiongJ. WangW. BaoH. JinH. LiangP. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme.J. Exp. Clin. Cancer Res.201938138010.1186/s13046‑019‑1371‑0 31462285
    [Google Scholar]
  7. MaR. TaphoornM.J.B. PlahaP. Advances in the management of glioblastoma.J. Neurol. Neurosurg. Psychiatry202192101103111110.1136/jnnp‑2020‑325334 34162730
    [Google Scholar]
  8. ShahJ.L. LiG. ShafferJ.L. AzoulayM.I. GibbsI.C. NagpalS. SoltysS.G. Stereotactic radiosurgery and hypofractionated radiotherapy for glioblastoma.Neurosurgery2018821243410.1093/neuros/nyx115 28605463
    [Google Scholar]
  9. GieryngA. PszczolkowskaD. WalentynowiczK.A. RajanW.D. KaminskaB. Immune microenvironment of gliomas.Lab. Invest.201797549851810.1038/labinvest.2017.19 28287634
    [Google Scholar]
  10. OsukaS. Van MeirE.G. Overcoming therapeutic resistance in glioblastoma: The way forward.J. Clin. Invest.2017127241542610.1172/JCI89587 28145904
    [Google Scholar]
  11. WuH. GuoC. WangC. XuJ. ZhengS. DuanJ. LiY. BaiH. XuQ. NingF. WangF. YangQ. Single‐cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug‐resistance mechanisms of recurrent glioblastoma.Cancer Sci.202311462609262110.1111/cas.15773 36853018
    [Google Scholar]
  12. ChenW. LiQ. ZhangG. WangH. ZhuZ. ChenL. LncRNA HOXA‐AS3 promotes the malignancy of glioblastoma through regulating miR‐455‐5p/USP3 axis.J. Cell. Mol. Med.20202420117551176710.1111/jcmm.15788 32918360
    [Google Scholar]
  13. WuW. YuT. WuY. TianW. ZhangJ. WangY. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression.J. Exp. Clin. Cancer Res.201938113310.1186/s13046‑019‑1132‑0 30898167
    [Google Scholar]
  14. ChiuY.C. HsiaoT.H. WangL.J. ChenY. ChuangE.Y. Analyzing differential regulatory networks modulated by continuous-state genomic features in glioblastoma multiforme.IEEE/ACM Trans. Comput. Biol. Bioinformatics20181561754176410.1109/TCBB.2016.2635646
    [Google Scholar]
  15. YuY. SongY. ChengL. ChenL. LiuB. LuD. LiX. LiY. LvF. XingY. CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells.J. Exp. Clin. Cancer Res.202241118810.1186/s13046‑022‑02381‑7 35655258
    [Google Scholar]
  16. HanY.H. WangY. LeeS.J. JinM.H. SunH.N. KwonT. Regulation of anoikis by extrinsic death receptor pathways.Cell Commun. Signal.202321122710.1186/s12964‑023‑01247‑5 37667281
    [Google Scholar]
  17. DaiY. ZhangX. OuY. ZouL. ZhangD. YangQ. QinY. DuX. LiW. YuanZ. XiaoZ. WenQ. Anoikis resistance––protagonists of breast cancer cells survive and metastasize after ECM detachment.Cell Commun. Signal.202321119010.1186/s12964‑023‑01183‑4 37537585
    [Google Scholar]
  18. HanH. SungJ.Y. KimS.H. YunU.J. KimH. JangE.J. YooH.E. HongE.K. GohS.H. MoonA. LeeJ.S. YeS.K. ShimJ. KimY.N. Fibronectin regulates anoikis resistance via cell aggregate formation.Cancer Lett.2021508597210.1016/j.canlet.2021.03.011 33771684
    [Google Scholar]
  19. RaeisiM. ZehtabiM. VelaeiK. FayyazpourP. AghaeiN. MehdizadehA. Anoikis in cancer: The role of lipid signaling.Cell Biol. Int.202246111717172810.1002/cbin.11896 36030535
    [Google Scholar]
  20. AmoedoN.D. RodriguesM.F. RumjanekF.D. MITOCHONDRIA: Are mitochondria accessory to metastasis?Int. J. Biochem. Cell Biol.201451535710.1016/j.biocel.2014.03.009 24661997
    [Google Scholar]
  21. ZhiZ. OuyangZ. RenY. ChengY. LiuP. WenY. ShaoY. Non-canonical phosphorylation of Bmf by p38 MAPK promotes its apoptotic activity in anoikis.Cell Death Differ.202229232333610.1038/s41418‑021‑00855‑3 34462553
    [Google Scholar]
  22. ZhangD. ZhouX. ZhangK. YuY. CuiS.W. NieS. Glucomannan from Aloe vera gel maintains intestinal barrier integrity via mitigating anoikis mediated by Nrf2-mitochondria axis.Int. J. Biol. Macromol.202323512380310.1016/j.ijbiomac.2023.123803 36841393
    [Google Scholar]
  23. KakavandiE. ShahbahramiR. GoudarziH. EslamiG. FaghihlooE. Anoikis resistance and oncoviruses.J. Cell. Biochem.201811932484249110.1002/jcb.26363 28836703
    [Google Scholar]
  24. RutherfordT.R. ElderA.M. LyonsT.R. Anoikis resistance in mammary epithelial cells is mediated by semaphorin 7a.Cell Death Dis.2021121087210.1038/s41419‑021‑04133‑5 34561423
    [Google Scholar]
  25. BelakovaB. WedigeN.K. AwadE.M. HessS. OszwaldA. FellnerM. KhanS.Y. ReschU. LipovacM. ŠmejkalK. UhrinP. BreussJ.M. Lipophilic statins eliminate senescent endothelial cells by inducing anoikis-related cell death.Cells20231224283610.3390/cells12242836 38132158
    [Google Scholar]
  26. AdeshakinF.O. AdeshakinA.O. AfolabiL.O. YanD. ZhangG. WanX. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming.Front. Oncol.20211162657710.3389/fonc.2021.626577 33854965
    [Google Scholar]
  27. SunZ. ZhaoY. WeiY. DingX. TanC. WangC. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma.Front. Immunol.20221393952310.3389/fimmu.2022.939523 36091049
    [Google Scholar]
  28. HongJ. Shiba-IshiiA. KimY. NoguchiM. SakamotoN. Ovarian carcinoma immunoreactive antigen domain 2 controls mitochondrial apoptosis in lung adenocarcinoma.Cancer Sci.2021112125114512610.1111/cas.15160 34628698
    [Google Scholar]
  29. WuD. YangX. PengH. GuoD. ZhaoW. ZhaoC. ZhouX. OCIAD2 suppressed tumor growth and invasion via AKT pathway in Hepatocelluar carcinoma.Carcinogenesis201738991091910.1093/carcin/bgx073 28911005
    [Google Scholar]
  30. LiJ.D. FarahA.A. HuangZ.G. ZhaiG.Q. WangR.G. LiuJ.L. WangQ.J. ZhangG.L. LeiZ.L. DangY.W. LiS.H. Clinical significance and potential regulatory mechanism of overexpression of pituitary tumor-transforming gene transcription factor in bladder cancer.BMC Cancer202222171310.1186/s12885‑022‑09810‑y 35768832
    [Google Scholar]
  31. NikasJ.B. Independent validation of a mathematical genomic model for survival of glioma patients.Am. J. Cancer Res.20166614081419 27429853
    [Google Scholar]
  32. SuiY. LiS. FuX.Q. ZhaoZ.J. XingS. Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease.J. Transl. Med.202321110910.1186/s12967‑023‑03943‑9 36765396
    [Google Scholar]
  33. LinR. FogartyC.E. MaB. LiH. NiG. LiuX. YuanJ. WangT. Identification of ferroptosis genes in immune infiltration and prognosis in thyroid papillary carcinoma using network analysis.BMC Genomics202122157610.1186/s12864‑021‑07895‑6 34315405
    [Google Scholar]
  34. TangG. QiL. SunZ. LiuJ. LvZ. ChenL. HuangB. ZhuS. LiuY. LiY. Evaluation and analysis of incidence and risk factors of lower extremity venous thrombosis after urologic surgeries: A prospective two-center cohort study using LASSO-logistic regression.Int. J. Surg.20218910594810.1016/j.ijsu.2021.105948 33892158
    [Google Scholar]
  35. ZhangD. ZhangS. WuJ. Expression profile analysis to predict potential biomarkers for glaucoma: BMP1, DMD and GEM.PeerJ20208e946210.7717/peerj.9462 32953253
    [Google Scholar]
  36. YuW. MaY. HouW. WangF. ChengW. QiuF. WuP. ZhangG. Identification of immune-related lncrna prognostic signature and molecular subtypes for glioblastoma.Front. Immunol.20211270693610.3389/fimmu.2021.706936 34899682
    [Google Scholar]
  37. DaiX. YeL. LiH. DongX. TianH. GaoP. DongJ. ChengH. Crosstalk between microglia and neural stem cells influences the relapse of glioblastoma in GBM immunological microenvironment.Clin. Immunol.202325110933310.1016/j.clim.2023.109333 37088298
    [Google Scholar]
  38. ZottelA. ŠamecN. Videtič PaskaA. JovčevskaI. Coding of glioblastoma progression and therapy resistance through long noncoding RNAs.Cancers2020127184210.3390/cancers12071842 32650527
    [Google Scholar]
  39. WangG. LinX. HanH. ZhangH. LiX. FengM. JiangC. lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p.Bioengineered2022135114401145510.1080/21655979.2022.2065947 35506168
    [Google Scholar]
  40. WuW. HuQ. NieE. YuT. WuY. ZhiT. JiangK. ShenF. WangY. ZhangJ. YouY. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma.Sci. Rep.2017714502910.1038/srep45029 28327666
    [Google Scholar]
  41. HsiehD. HsiehA. SteaB. EllsworthR. IGFBP2 promotes glioma tumor stem cell expansion and survival.Biochem. Biophys. Res. Commun.2010397236737210.1016/j.bbrc.2010.05.145 20515648
    [Google Scholar]
  42. ChuaC.Y. LiuY. GranbergK.J. HuL. HaapasaloH. AnnalaM.J. CogdellD.E. VerploegenM. MooreL.M. FullerG.N. NykterM. CaveneeW.K. ZhangW. IGFBP2 potentiates nuclear EGFR–STAT3 signaling.Oncogene201635673874710.1038/onc.2015.131 25893308
    [Google Scholar]
  43. CaiJ. ChenQ. CuiY. DongJ. ChenM. WuP. JiangC. Immune heterogeneity and clinicopathologic characterization of IGFBP2 in 2447 glioma samples.OncoImmunology201875e142651610.1080/2162402X.2018.1426516 29721393
    [Google Scholar]
  44. ZhangX. SunX. GuoC. LiJ. LiangG. Cancer-associated fibroblast-associated gene IGFBP2 promotes glioma progression through induction of M2 macrophage polarization.Am. J. Physiol. Cell Physiol.20243261C252C26810.1152/ajpcell.00234.2023 37982173
    [Google Scholar]
  45. LindströmM.S. Expanding the scope of candidate prognostic marker IGFBP2 in glioblastoma.Biosci. Rep.2019397BSR2019077010.1042/BSR20190770 31296788
    [Google Scholar]
  46. GuoM. GoudarziK.M. AbediS. PieberM. SjöbergE. BehnanJ. ZhangX.M. HarrisR.A. BartekJ. LindströmM.S. NistérM. HägerstrandD. SFRP2 induces a mesenchymal subtype transition by suppression of SOX2 in glioblastoma.Oncogene202140325066508010.1038/s41388‑021‑01825‑2 34021259
    [Google Scholar]
  47. HanM. WangS. FritahS. WangX. ZhouW. YangN. NiS. HuangB. ChenA. LiG. MileticH. ThorsenF. BjerkvigR. LiX. WangJ. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling.Brain2020143251253010.1093/brain/awz406 31891366
    [Google Scholar]
  48. González-GarcíaN. Nieto-LibreroA.B. VitalA.L. TaoH.J. González-TablasM. OteroÁ. Galindo-VillardónP. OrfaoA. TaberneroM.D. Multivariate analysis reveals differentially expressed genes among distinct subtypes of diffuse astrocytic gliomas: Diagnostic implications.Sci. Rep.20201011127010.1038/s41598‑020‑67743‑7 32647207
    [Google Scholar]
  49. LeventouxN. AugustusM. AzarS. RiquierS. VilleminJ.P. GuelfiS. FalhaL. BauchetL. GozéC. RitchieW. CommesT. DuffauH. RigauV. HugnotJ.P. Transformation Foci in IDH1-mutated Gliomas Show STAT3 Phosphorylation and Downregulate the Metabolic Enzyme ETNPPL, a Negative Regulator of Glioma Growth.Sci. Rep.2020101550410.1038/s41598‑020‑62145‑1 32218467
    [Google Scholar]
  50. LiuG. YanT. LiX. SunJ. ZhangB. WangH. ZhuY. Daam1 activates RhoA to regulate Wnt5a induced glioblastoma cell invasion.Oncol. Rep.2018392465472 29207169
    [Google Scholar]
  51. TaddeiM.L. GiannoniE. FiaschiT. ChiarugiP. Anoikis: An emerging hallmark in health and diseases.J. Pathol.2012226238039310.1002/path.3000 21953325
    [Google Scholar]
  52. HuG. LiJ. ZengY. LiuL. YuZ. QiX. LiuK. YaoH. The anoikis-related gene signature predicts survival accurately in colon adenocarcinoma.Sci. Rep.20231311391910.1038/s41598‑023‑40907‑x 37626132
    [Google Scholar]
  53. LiS. ChenY. ZhangY. JiangX. JiangY. QinX. YangH. WuC. LiuY. Shear stress promotes anoikis resistance of cancer cells via caveolin‐1‐dependent extrinsic and intrinsic apoptotic pathways.J. Cell. Physiol.201923443730374310.1002/jcp.27149 30171601
    [Google Scholar]
  54. ZhouY. WangC. ChenY. ZhangW. FuZ. LiJ. ZhengJ. XieM. A novel risk model based on anoikis: Predicting prognosis and immune infiltration in cutaneous melanoma.Front. Pharmacol.202313109085710.3389/fphar.2022.1090857 36726781
    [Google Scholar]
  55. HuangY.L. LiangC.Y. RitzD. CoelhoR. SeptiadiD. EstermannM. CuminC. RimmerN. SchötzauA. Núñez LópezM. FedierA. KonantzM. VlajnicT. CalabreseD. LengerkeC. DavidL. Rothen-RutishauserB. JacobF. Heinzelmann-SchwarzV. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis.eLife20209e5944210.7554/eLife.59442
    [Google Scholar]
  56. RizziF. NaponelliV. SilvaA. ModernelliA. RamazzinaI. BonaciniM. TarditoS. GattiR. UggeriJ. BettuzziS. PolyphenonE. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis.Carcinogenesis201435482883910.1093/carcin/bgt481 24343359
    [Google Scholar]
  57. XiaS. WuJ. ZhouW. ZhangM. ZhaoK. TianD. LiuJ. LiaoJ. HRC promotes anoikis resistance and metastasis by suppressing endoplasmic reticulum stress in hepatocellular carcinoma.Int. J. Med. Sci.202118143112312410.7150/ijms.60610 34400882
    [Google Scholar]
  58. ZouY. XuL. WangW. ZhuX. LinJ. LiH. ChenJ. XuW. GaoH. WuX. YinZ. WangQ. Muscone restores anoikis sensitivity in TMZ-resistant glioblastoma cells by suppressing TOP2A via the EGFR/Integrin β1/FAK signaling pathway.Phytomedicine202412915571410.1016/j.phymed.2024.155714 38723526
    [Google Scholar]
  59. HanifehM. AtaeiF. XIAP as a multifaceted molecule in Cellular Signaling.Apoptosis2022277-844145310.1007/s10495‑022‑01734‑z 35661061
    [Google Scholar]
  60. SchapiraA.H.V. Mitochondrial diseases.Lancet201237998281825183410.1016/S0140‑6736(11)61305‑6 22482939
    [Google Scholar]
  61. MatsuyamaS. ReedJ.C. Mitochondria-dependent apoptosis and cellular pH regulation.Cell Death Differ.20007121155116510.1038/sj.cdd.4400779 11175252
    [Google Scholar]
  62. NguyenT.T. WeiS. NguyenT.H. JoY. ZhangY. ParkW. GarianiK. OhC.M. KimH.H. HaK.T. ParkK.S. ParkR. LeeI.K. ShongM. HoutkooperR.H. RyuD. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease.Exp. Mol. Med.20235581595161910.1038/s12276‑023‑01046‑5 37612409
    [Google Scholar]
  63. JinL. ChunJ. PanC. AlesiG.N. LiD. MaglioccaK.R. KangY. ChenZ.G. ShinD.M. KhuriF.R. FanJ. KangS. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis.Oncogene201736273797380610.1038/onc.2017.6 28218905
    [Google Scholar]
  64. KimH. ChoiP. KimT. KimY. SongB.G. ParkY.T. ChoiS.J. YoonC.H. LimW.C. KoH. HamJ. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer.J. Ginseng Res.202145113414810.1016/j.jgr.2020.02.005 33437165
    [Google Scholar]
  65. KhanS.U. FatimaK. MalikF. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis.Clin. Exp. Metastasis202239571572610.1007/s10585‑022‑10172‑9 35829806
    [Google Scholar]
  66. MakiM. JeongMin, H.; Nakagawa, T.; Kawai, H.; Sakamoto, N.; Sato, Y.; Noguchi, M. Aberrant OCIAD2 demethylation in lung adenocarcinoma is associated with outcome.Pathol. Int.2022721049650510.1111/pin.13262 35920378
    [Google Scholar]
  67. KasashimaH. DuranA. Martinez-OrdoñezA. NakanishiY. KinoshitaH. LinaresJ.F. Reina-CamposM. KudoY. L’HermitteA. YashiroM. OhiraM. BaoF. TaurielloD.V.F. BatlleE. Diaz-MecoM.T. MoscatJ. Stromal SOX2 upregulation promotes tumorigenesis through the generation of a SFRP1/2-expressing cancer-associated fibroblast population.Dev. Cell202156195110.e1010.1016/j.devcel.2020.10.014 33207226
    [Google Scholar]
  68. StrickerS.H. FeberA. EngströmP.G. CarénH. KurianK.M. TakashimaY. WattsC. WayM. DirksP. BertoneP. SmithA. BeckS. PollardS.M. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner.Genes Dev.201327665466910.1101/gad.212662.112 23512659
    [Google Scholar]
  69. AhaniN. Karimi ArzenaniM. ShirkoohiR. RokoueiM. Alipour EskandaniM. NikraveshA. Expression of insulin-like growth factor binding protein-2 (IGFBP-2) gene in negative and positive human cytomegalovirus glioblastoma multiforme tissues.Med. Oncol.201431281210.1007/s12032‑013‑0812‑4 24352760
    [Google Scholar]
  70. PatilS.S. RailkarR. SwainM. AtreyaH.S. DigheR.R. KondaiahP. Novel anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion.J. Neurooncol.2015123222523510.1007/s11060‑015‑1800‑7 25944386
    [Google Scholar]
  71. YuZ. DuM. LuL. A novel 16-genes signature scoring system as prognostic model to evaluate survival risk in patients with glioblastoma.Biomedicines202210231710.3390/biomedicines10020317 35203526
    [Google Scholar]
  72. YuanQ. CaiH.Q. ZhongY. ZhangM.J. ChengZ.J. HaoJ.J. WangM.R. WanJ.H. Overexpression of IGFBP2 mRNA predicts poor survival in patients with glioblastoma.Biosci. Rep.2019396BSR2019004510.1042/BSR20190045 31138764
    [Google Scholar]
  73. JiangX. YanY. HuM. ChenX. WangY. DaiY. WuD. WangY. ZhuangZ. XiaH. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells.J. Neurosurg.2016124112913610.3171/2014.12.JNS1426 26274999
    [Google Scholar]
  74. RezaeiO. TamizkarK.H. SharifiG. TaheriM. Ghafouri-FardS. Emerging role of long non-coding RNAs in the pathobiology of glioblastoma.Front. Oncol.20211062588410.3389/fonc.2020.625884 33634032
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073305357240719070044
Loading
/content/journals/cchts/10.2174/0113862073305357240719070044
Loading

Data & Media loading...

Supplements

Table . Raw data of clinical characteristics. The table contained information on data, such as grade, gender, and age. It was used to analyze the correlation between anoikis-associated genes and clinical characteristics. Annex . STR analysis of LN229, T98G, U87MG, and U251MG cells.


  • Article Type:
    Research Article
Keyword(s): anoikis score; GBM; migration; OCIAD2; proliferation; TCGA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test