Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

According to the 2022 Global Cancer Statistics, lung cancer is the leading cause of cancer-related mortality worldwide. Lung adenocarcinoma (LUAD), which is a histological subtype of Non-Small Cell Lung Cancer (NSCLC), accounts for 40% of primary lung cancer. Therefore, there is an urgent need to identify new prognostic markers as clinical predictive markers for LUAD.

Objective

This study aimed to investigate the role of Keratin 80 (KRT80) in the prognosis of LUAD and its underlying mechanisms.

Methods

Bioinformatics analysis was conducted using data retrieved from The Cancer Genome Atlas (TCGA) databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were employed to predict the involved biological processes and signaling pathways, respectively. The LinkedOmics database was utilized to identify differentially expressed genes (DEGs) correlated with KRT80. Nomograms and Kaplan-Meier plots were constructed to evaluate the survival outcomes of patients diagnosed with LUAD. Moreover, TIMER was employed to conduct correlation analyses between KRT80 expression and immune cell infiltration, shedding light on the intricate interplay between KRT80 and the tumor microenvironment in LUAD. To ascertain the RNA and protein expression levels of KRT80 in LUAD and adjacent normal tissues, Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) and immunohistochemistry techniques were employed, respectively.

Results

Scrutiny of the TCGA dataset revealed KRT80 up-regulation across pan-cancer tissues, notably elevated in LUAD compared to healthy lung tissues. This finding was validated in our clinical samples, where Kaplan-Meier survival curves indicated poorer survival rates for high KRT80 expression in LUAD. A positive correlation was found between the transcription level of KRT80 in LUAD samples and clinical parameters, such as lymph node metastasis stage, distant metastasis, and pathological stage. Survival, logistic regression, and Cox regression analyses emphasized the clinical prognostic significance of high KRT80 expression in LUAD. Nomogram results underscored the robust predictive potential of KRT80 for the survival of LUAD patients. Gene functional enrichment analyses mainly associated KRT80 with cytokine-cytokine receptor interactions, cell cycle, apoptosis, and chemokine signaling pathways. Based on the results of the immune infiltration analysis, it can be found that the expression of KRT80 is related to the immune cell subsets and survival rate of patients with LUAD.

Conclusion

Our research revealed a significant upregulation of KRT80 in LUAD, with heightened KRT80 expression correlating with unfavorable prognosis. This study represents a comprehensive and systematic evaluation of KRT80 expression in LUAD, encompassing its prognostic and diagnostic significance, as well as underlying mechanisms. Our findings suggest that KRT80 may emerge as a novel prognostic and predictive biomarker in LUAD.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073294339240603103623
2024-06-20
2025-10-15
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. ImyanitovE.N. IyevlevaA.G. LevchenkoE.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives.Crit. Rev. Oncol. Hematol.202115710319410.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  3. MaoH. Clinical relevance of mutant-allele tumor heterogeneity and lung adenocarcinoma.Ann. Transl. Med.201971843210.21037/atm.2019.08.112 31700868
    [Google Scholar]
  4. ThamrongjirapatT. MunthamD. IncharoenP. TrachuN. Sae-LimP. SarachaiN. KhiewngamK. MonnamoN. KantathutN. NgodngamthaweesukM. AtivitavasT. ChansriwongP. NitiwarangkulC. RuangkanchanasetrR. KositwattanarerkA. SirachainanE. DejthevapornT. ReungwetwattanaT. Molecular alterations and clinical prognostic factors in resectable non-small cell lung cancer.BMC Cancer202424120010.1186/s12885‑024‑11934‑2 38347487
    [Google Scholar]
  5. DengY. ChenX. HuangC. SongJ. FengS. ChenX. ZhouR. Screening and validation of significant genes with poor prognosis in pathologic stage-I lung adenocarcinoma.J. Oncol.2022202211710.1155/2022/3794021 35444699
    [Google Scholar]
  6. LiB. CuiY. DiehnM. LiR. Development and validation of an individualized immune prognostic signature in early-stage nonsquamous non–small cell lung cancer.JAMA Oncol.20173111529153710.1001/jamaoncol.2017.1609 28687838
    [Google Scholar]
  7. OmaryM.B. KuN.O. StrnadP. HanadaS. Toward unraveling the complexity of simple epithelial keratins in human disease.J. Clin. Invest.200911971794180510.1172/JCI37762 19587454
    [Google Scholar]
  8. LangbeinL. EckhartL. RogersM.A. Praetzel-WunderS. SchweizerJ. Against the rules: Human keratin K80: Two functional alternative splice variants, K80 and K80.1, with special cellular localization in a wide range of epithelia.J. Biol. Chem.201028547369093692110.1074/jbc.M110.161745 20843789
    [Google Scholar]
  9. BragullaH.H. HombergerD.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia.J. Anat.2009214451655910.1111/j.1469‑7580.2009.01066.x 19422428
    [Google Scholar]
  10. SchweizerJ. BowdenP.E. CoulombeP.A. LangbeinL. LaneE.B. MaginT.M. MaltaisL. OmaryM.B. ParryD.A.D. RogersM.A. WrightM.W. New consensus nomenclature for mammalian keratins.J. Cell Biol.2006174216917410.1083/jcb.200603161 16831889
    [Google Scholar]
  11. MollR. DivoM. LangbeinL. The human keratins: Biology and pathology.Histochem. Cell Biol.2008129670573310.1007/s00418‑008‑0435‑6 18461349
    [Google Scholar]
  12. PlowmanJ.E. The proteomics of keratin proteins.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078491-218118910.1016/j.jchromb.2006.07.055 16931191
    [Google Scholar]
  13. KorgeB.P. GanS.Q. McBrideO.W. MischkeD. SteinertP.M. Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops.Proc. Natl. Acad. Sci. USA199289391091410.1073/pnas.89.3.910 1371013
    [Google Scholar]
  14. KummarS. FogarasiM. CanovaA. MotaA. CiesielskiT. Cytokeratin 7 and 20 staining for the diagnosis of lung and colorectal adenocarcinoma.Br. J. Cancer200286121884188710.1038/sj.bjc.6600326 12085180
    [Google Scholar]
  15. SuY.C. HsuY.C. ChaiC.Y. Role of TTF-1, CK20, and CK7 immunohistochemistry for diagnosis of primary and secondary lung adenocarcinoma.Kaohsiung J. Med. Sci.2006221141910.1016/S1607‑551X(09)70214‑1 16570563
    [Google Scholar]
  16. GaoX. WangG. ZhangM. ZhangX. ZhangS. LongH. LINC01485 contributes to colorectal cancer progression by targeting MIR ‐383‐5p/KRT80 axis.Environ. Toxicol.202439139840810.1002/tox.23983 37782686
    [Google Scholar]
  17. ZhangF. WangG. YanW. JiangH. MiR-4268 suppresses gastric cancer genesis through inhibiting keratin 80.Cell Cycle202221192051206410.1080/15384101.2022.2085351 35748914
    [Google Scholar]
  18. LiuO. WangC. WangS. HuY. GouR. DongH. LiS. LiX. LinB. Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer.J. Cancer202112226835685010.7150/jca.64031 34659572
    [Google Scholar]
  19. LiG. GuoJ. MouY. LuoQ. WangX. XueW. HouT. ZengT. YangY. Keratin gene signature expression drives epithelial-mesenchymal transition through enhanced TGF-β signaling pathway activation and correlates with adverse prognosis in lung adenocarcinoma.Heliyon2024103e2454910.1016/j.heliyon.2024.e24549 38322947
    [Google Scholar]
  20. WeiX.Y. ZhaoJ. TongH.B. ChengS.J. HeN. SongF.X. Characters of KRT80 and its roles in neoplasms diseases.Cancer Med.20231213139911400310.1002/cam4.6040 37211956
    [Google Scholar]
  21. Cancer Genome Atlas Research NetworkComprehensive molecular profiling of lung adenocarcinoma.Nature2014511751154355010.1038/nature13385 25079552
    [Google Scholar]
  22. ForestF. LavilleD. Da CruzV. CasteilloF. ClemensonA. YvorelV. PicotT. WHO grading system for invasive pulmonary lung adenocarcinoma reveals distinct molecular signature: An analysis from the cancer genome atlas database.Exp. Mol. Pathol.202212510475610.1016/j.yexmp.2022.104756 35339455
    [Google Scholar]
  23. SchroederM.P. Gonzalez-PerezA. Lopez-BigasN. Visualizing multidimensional cancer genomics data.Genome Med.201351910.1186/gm413 23363777
    [Google Scholar]
  24. WeinsteinJ.N. CollissonE.A. MillsG.B. ShawK.R.M. OzenbergerB.A. EllrottK. ShmulevichI. SanderC. StuartJ.M. The Cancer Genome Atlas Pan-Cancer analysis project.Nat. Genet.201345101113112010.1038/ng.2764 24071849
    [Google Scholar]
  25. ChengP.F. DummerR. LevesqueM.P. Data mining The Cancer Genome Atlas in the era of precision cancer medicine.Swiss Med. Wkly.2015145w1418310.4414/smw.2015.14183 26375999
    [Google Scholar]
  26. FeiQ. ZhangX. WangS. ShuG. YinG. A pan-cancer characterization of immune-related NFIL3 identifies potential predictive biomarker.J. Cancer20241551271128610.7150/jca.88765 38356719
    [Google Scholar]
  27. WangS. XiongY. ZhaoL. GuK. LiY. ZhaoF. LiJ. WangM. WangH. TaoZ. WuT. ZhengY. LiX. LiuX.S. UCSCXenaShiny: An R/CRAN package for interactive analysis of UCSC Xena data.Bioinformatics202238252752910.1093/bioinformatics/btab561 34323947
    [Google Scholar]
  28. GoldmanM.J. CraftB. HastieM. RepečkaK. McDadeF. KamathA. BanerjeeA. LuoY. RogersD. BrooksA.N. ZhuJ. HausslerD. Visualizing and interpreting cancer genomics data via the Xena platform.Nat. Biotechnol.202038667567810.1038/s41587‑020‑0546‑8 32444850
    [Google Scholar]
  29. WangJ. Computational biology of genome expression and regulation--a review of microarray bioinformatics.J. Environ. Pathol. Toxicol. Oncol.200827315717910.1615/JEnvironPatholToxicolOncol.v27.i3.10 18652564
    [Google Scholar]
  30. HanaiT. HamadaH. OkamotoM. Application of bioinformatics for DNA microarray data to bioscience, bioengineering and medical fields.J. Biosci. Bioeng.2006101537738410.1263/jbb.101.377 16781465
    [Google Scholar]
  31. JiangJ. ZhangY. WangJ. YangX. RenX. HuangH. WangJ. LuJ. ZhongY. LinZ. LinX. JiaY. LinS. Identification of CDT1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches.PeerJ202311e1616610.7717/peerj.16166 37790630
    [Google Scholar]
  32. ZhouL. BiY. WuX. HeH. High keratin 15 expression reflects favorable prognosis in early cervical cancer patients.Ir. J. Med. Sci.2024202403686610.1007/s11845‑024‑03686‑6 38639842
    [Google Scholar]
  33. CaiC. ZhangY. HuX. HuW. YangS. QiuH. ChuT. CDT1 is a novel prognostic and predictive biomarkers for hepatocellular carcinoma.Front. Oncol.20211172164410.3389/fonc.2021.721644 34631549
    [Google Scholar]
  34. MatsumotoM. RokunoheD. SasakiT. MatsuzakiY. NakanoH. MizukamiH. AkasakaE. SawamuraD. Upregulated expression of glucose transporter isoform 1 in invasive and metastatic extramammary Paget’s disease.Exp. Ther. Med.202427522810.3892/etm.2024.12516 38596658
    [Google Scholar]
  35. SteyerbergE.W. MoonsK.G.M. van der WindtD.A. HaydenJ.A. PerelP. SchroterS. RileyR.D. HemingwayH. AltmanD.G. Prognosis Research Strategy (PROGRESS) 3: Prognostic model research.PLoS Med.2013102e100138110.1371/journal.pmed.1001381 23393430
    [Google Scholar]
  36. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  37. MobashirM. TurunenS.P. IzhariM.A. AshankytyI.M. HelledayT. LehtiK. An Approach for systems-level understanding of prostate cancer from high-throughput data integration to pathway modeling and simulation.Cells20221124412110.3390/cells11244121 36552885
    [Google Scholar]
  38. WangL. FengZ. WangX. WangX. ZhangX. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data.Bioinformatics201026113613810.1093/bioinformatics/btp612 19855105
    [Google Scholar]
  39. EmilssonV. ThorleifssonG. ZhangB. LeonardsonA.S. ZinkF. ZhuJ. CarlsonS. HelgasonA. WaltersG.B. GunnarsdottirS. MouyM. SteinthorsdottirV. EiriksdottirG.H. BjornsdottirG. ReynisdottirI. GudbjartssonD. HelgadottirA. JonasdottirA. JonasdottirA. StyrkarsdottirU. GretarsdottirS. MagnussonK.P. StefanssonH. FossdalR. KristjanssonK. GislasonH.G. StefanssonT. LeifssonB.G. ThorsteinsdottirU. LambJ.R. GulcherJ.R. ReitmanM.L. KongA. SchadtE.E. StefanssonK. Genetics of gene expression and its effect on disease.Nature2008452718642342810.1038/nature06758 18344981
    [Google Scholar]
  40. Gonzalez-PerezA. MustonenV. RevaB. RitchieG.R. CreixellP. KarchinR. VazquezM. FinkJ.L. KassahnK.S. PearsonJ.V. BaderG.D. BoutrosP.C. MuthuswamyL. OuelletteB.F. ReimandJ. LindingR. ShibataT. ValenciaA. ButlerA. DronovS. FlicekP. ShannonN.B. CarterH. DingL. SanderC. StuartJ.M. SteinL.D. Lopez-BigasN. Computational approaches to identify functional genetic variants in cancer genomes.Nat. Methods201310872372910.1038/nmeth.2562 23900255
    [Google Scholar]
  41. van ’t VeerL.J. DaiH. van de VijverM.J. HeY.D. HartA.A.M. MaoM. PeterseH.L. van der KooyK. MartonM.J. WitteveenA.T. SchreiberG.J. KerkhovenR.M. RobertsC. LinsleyP.S. BernardsR. FriendS.H. Gene expression profiling predicts clinical outcome of breast cancer.Nature2002415687153053610.1038/415530a 11823860
    [Google Scholar]
  42. LiT. FanJ. WangB. TraughN. ChenQ. LiuJ.S. LiB. LiuX.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells.Cancer Res.20177721e108e11010.1158/0008‑5472.CAN‑17‑0307 29092952
    [Google Scholar]
  43. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  44. MuthusamyB. RaskinaK. LofgrenK.T. LiG. TolbaK. SchwedK. CastellanosE. HuangR.S.P. OxnardG.R. SchrockA.B. PennellN. Quantifying the value of multigene testing in resected early stage lung adenocarcinoma.J. Thorac. Oncol.202318447648610.1016/j.jtho.2022.11.027 36494074
    [Google Scholar]
  45. KadaraH. TranL.M. LiuB. VachaniA. LiS. SinjabA. ZhouX.J. DubinettS.M. KrysanK. Early diagnosis and screening for lung cancer.Cold Spring Harb. Perspect. Med.2021119a03799410.1101/cshperspect.a037994 34001525
    [Google Scholar]
  46. AbboshC. BirkbakN.J. SwantonC. Early stage NSCLC — challenges to implementing ctDNA-based screening and MRD detection.Nat. Rev. Clin. Oncol.201815957758610.1038/s41571‑018‑0058‑3 29968853
    [Google Scholar]
  47. RemonJ. SoriaJ.C. PetersS. Early and locally advanced non-small-cell lung cancer: An update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy.Ann. Oncol.202132121637164210.1016/j.annonc.2021.08.1994 34481037
    [Google Scholar]
  48. AltorkiN.K. McGrawT.E. BorczukA.C. SaxenaA. PortJ.L. StilesB.M. LeeB.E. SanfilippoN.J. ScheffR.J. PuaB.B. GrudenJ.F. ChristosP.J. SpinelliC. GakuriaJ. UppalM. BinderB. ElementoO. BallmanK.V. FormentiS.C. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: A single-centre, randomised phase 2 trial.Lancet Oncol.202122682483510.1016/S1470‑2045(21)00149‑2 34015311
    [Google Scholar]
  49. ShuC.A. GainorJ.F. AwadM.M. ChiuzanC. GriggC.M. PabaniA. GarofanoR.F. StooplerM.B. ChengS.K. WhiteA. LanutiM. D’OvidioF. BacchettaM. SonettJ.R. SaqiA. RizviN.A. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: An open-label, multicentre, single-arm, phase 2 trial.Lancet Oncol.202021678679510.1016/S1470‑2045(20)30140‑6 32386568
    [Google Scholar]
  50. WislezM. MazieresJ. LavoleA. ZalcmanG. CarreO. EgenodT. CaliandroR. Dubos-ArvisC. JeanninG. MolinierO. MassianiM.A. LanglaisA. MorinF. Le Pimpec BarthesF. BrouchetL. AssouadJ. MilleronB. DamotteD. AntoineM. WesteelV. Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): Results from a multicenter study (IFCT-1601 IONESCO).J. Immunother. Cancer20221010e00563610.1136/jitc‑2022‑005636 36270733
    [Google Scholar]
  51. ProvencioM. NadalE. InsaA. García-CampeloM.R. Casal-RubioJ. DómineM. MajemM. Rodríguez-AbreuD. Martínez-MartíA. De Castro CarpeñoJ. CoboM. López VivancoG. Del BarcoE. Bernabé CaroR. ViñolasN. Barneto ArandaI. ViteriS. PereiraE. RoyuelaA. CasarrubiosM. Salas AntónC. ParraE.R. WistubaI. CalvoV. Laza-BriviescaR. RomeroA. MassutiB. Cruz-BermúdezA. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): An open-label, multicentre, single-arm, phase 2 trial.Lancet Oncol.202021111413142210.1016/S1470‑2045(20)30453‑8 32979984
    [Google Scholar]
  52. MountziosG. RemonJ. HendriksL.E.L. García-CampeloR. RolfoC. Van SchilP. FordeP.M. BesseB. SubbiahV. ReckM. SoriaJ.C. PetersS. Immune-checkpoint inhibition for resectable non-small-cell lung cancer — opportunities and challenges.Nat. Rev. Clin. Oncol.2023201066467710.1038/s41571‑023‑00794‑7 37488229
    [Google Scholar]
  53. NadlerE. VasudevanA. WentworthC. RobertN. PenrodJ.R. FioreJ. VoL. Real-world relationship of early end points to survival end points in patients with resectable non-small-cell lung cancer.Future Oncol.202319261785180010.2217/fon‑2023‑0170 37665271
    [Google Scholar]
  54. HanG. SinjabA. RahalZ. LynchA.M. TreekitkarnmongkolW. LiuY. SerranoA.G. FengJ. LiangK. KhanK. LuW. HernandezS.D. LiuY. CaoX. DaiE. PeiG. HuJ. AbayaC. Gomez-BolanosL.I. PengF. ChenM. ParraE.R. CasconeT. SepesiB. MoghaddamS.J. ScheetP. NegraoM.V. HeymachJ.V. LiM. DubinettS.M. StevensonC.S. SpiraA.E. FujimotoJ. SolisL.M. WistubaI.I. ChenJ. WangL. KadaraH. An atlas of epithelial cell states and plasticity in lung adenocarcinoma.Nature2024627800465666310.1038/s41586‑024‑07113‑9 38418883
    [Google Scholar]
  55. KadaraH. ScheetP. WistubaI.I. SpiraA.E. Early events in the molecular pathogenesis of lung cancer.Cancer Prev. Res. (Phila.)20169751852710.1158/1940‑6207.CAPR‑15‑0400 27006378
    [Google Scholar]
  56. RogersM.A. EdlerL. WinterH. LangbeinL. BeckmannI. SchweizerJ. Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13.J. Invest. Dermatol.2005124353654410.1111/j.0022‑202X.2004.23530.x 15737194
    [Google Scholar]
  57. ToivolaD.M. BoorP. AlamC. StrnadP. Keratins in health and disease.Curr. Opin. Cell Biol.201532738110.1016/j.ceb.2014.12.008 25599598
    [Google Scholar]
  58. StrnadP. PaschkeS. JangK.H. KuN.O. Keratins.Curr. Opin. Gastroenterol.201228320921610.1097/MOG.0b013e3283525cb8 22450891
    [Google Scholar]
  59. WangX. LaoY. XuN. XiZ. WuM. WangH. LiX. TanH. SunM. XuH. Oblongifolin C inhibits metastasis by up-regulating keratin 18 and tubulins.Sci. Rep.2015511029310.1038/srep10293 25973684
    [Google Scholar]
  60. XiangZ.L. ZengZ.C. TangZ.Y. FanJ. SunH.C. TanY.S. Expression of cytokeratin 19 and matrix metalloproteinase 2 predicts lymph node metastasis in hepatocellular carcinoma.Mol. Biol. Rep.20113853531353910.1007/s11033‑010‑0463‑x 21104440
    [Google Scholar]
  61. CzapiewskiP. BobowiczM. PęksaR. SkrzypskiM. GorczyńskiA. Szczepańska-MichalskaK. KorwatA. JankowskiM. ZegarskiW. Szulgo-PaczkowskaA. PolecT. PiątekM. SkokowskiJ. HaybaeckJ. ŻaczekA. BiernatW. Keratin 7 expression in lymph node metastases but not in the primary tumour correlates with distant metastases and poor prognosis in colon carcinoma.Pol. J. Pathol.20163322823410.5114/pjp.2016.63774 28155971
    [Google Scholar]
  62. PolioudakiH. AgelakiS. ChiotakiR. PolitakiE. MavroudisD. MatikasA. GeorgouliasV. TheodoropoulosP.A. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer.BMC Cancer201515139910.1186/s12885‑015‑1386‑7 25962645
    [Google Scholar]
  63. LiC. LiuX. LiuY. LiuX. WangR. LiaoJ. WuS. FanJ. PengZ. LiB. WangZ. Keratin 80 promotes migration and invasion of colorectal carcinoma by interacting with PRKDC via activating the AKT pathway.Cell Death Dis.2018910100910.1038/s41419‑018‑1030‑y 30262880
    [Google Scholar]
  64. SongH. XuY. XuT. FanR. JiangT. CaoM. ShiL. SongJ. CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p.Biomed. Pharmacother.202012610994110.1016/j.biopha.2020.109941 32169757
    [Google Scholar]
  65. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  66. TanA.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC).Thorac. Cancer202011351151810.1111/1759‑7714.13328 31989769
    [Google Scholar]
  67. BorghiN. LowndesM. MaruthamuthuV. GardelM.L. NelsonW.J. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions.Proc. Natl. Acad. Sci. USA201010730133241332910.1073/pnas.1002662107 20566866
    [Google Scholar]
  68. CanelM. SerrelsA. FrameM.C. BruntonV.G. E-cadherin–integrin crosstalk in cancer invasion and metastasis.J. Cell Sci.2013126239340110.1242/jcs.100115 23525005
    [Google Scholar]
  69. GajewskiT.F. SchreiberH. FuY.X. Innate and adaptive immune cells in the tumor microenvironment.Nat. Immunol.201314101014102210.1038/ni.2703 24048123
    [Google Scholar]
  70. LiB. SeversonE. PignonJ.C. ZhaoH. LiT. NovakJ. JiangP. ShenH. AsterJ.C. RodigS. SignorettiS. LiuJ.S. LiuX.S. Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy.Genome Biol.201617117410.1186/s13059‑016‑1028‑7 27549193
    [Google Scholar]
  71. WangS. LiuW. LyD. XuH. QuL. ZhangL. Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer.Cell. Mol. Immunol.201916161810.1038/s41423‑018‑0027‑x 29628498
    [Google Scholar]
  72. GottlinE.B. BentleyR.C. CampaM.J. PisetskyD.S. HerndonJ.E.II PatzE.F.Jr The Association of Intratumoral Germinal Centers with early-stage non-small cell lung cancer.J. Thorac. Oncol.20116101687169010.1097/JTO.0b013e3182217bec 21642860
    [Google Scholar]
  73. VerneauJ. Sautés-FridmanC. SunC.M. Dendritic cells in the tumor microenvironment: Prognostic and theranostic impact.Semin. Immunol.20204810141010.1016/j.smim.2020.101410 33011065
    [Google Scholar]
  74. ChenD. ZhangX. LiZ. ZhuB. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages.Theranostics20211131016103010.7150/thno.51777 33391518
    [Google Scholar]
  75. LiM. JiangP. WeiS. WangJ. LiC. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression.Front. Immunol.202314111331210.3389/fimmu.2023.1113312 36845095
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073294339240603103623
Loading
/content/journals/cchts/10.2174/0113862073294339240603103623
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioinformatics analysis; KRT80; LUAD; lung adenocarcinoma; predictive biomarker; RT-qPCR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test