Skip to content
2000
Volume 28, Issue 9
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Synthetic drugs currently prescribed for the treatment of Human African Trypanosomiasis (HAT) are non-specific, toxic, demand extended therapeutic regimes and are of varying efficacy. Along with the challenging demographic and socio-economic hurdles, the ever-increasing risk of drug resistance is another major problem to be addressed. Cysteine protease, Heat shock proteins (HSP-90), Trypanothione reductase (TR), Farnesyl diphosphate synthase, Glucose-6-phosphate dehydrogenase, UP-4-galactose epimerase, and Cytidine triphosphate synthetase are potential enzymatic targets for the development of novel inhibitors against HAT which are the main focus of this review. The potential enzymatic targets of , especially small molecules like cysteine proteases and heat shock proteins are identified as major candidates for the sustenance of the parasite, their proliferation, infection, and spread of the disease. The development of new compounds to combat the disease by thorough ligand modification has been explored in the current review. Extracting these compounds and studying their efficacy, toxicity, and target mechanism extensively, this review has proposed a list of different compounds, including some synthetic and natural compounds along with multi-target inhibitors such as acoziborole, fexinidazole, . Potential inhibitors against these enzymatic targets of the are important candidates for designing novel therapeutics against HAT. Multi-target inhibitors have also been identified as crucial molecules because of their potential advantage against the development of drug resistance.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073293708240416113543
2024-04-25
2025-11-06
Loading full text...

Full text loading...

References

  1. MatetoviciI. De VooghtL. Van Den AbbeeleJ. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes.Dev Comp Immunol20199818118810.1016/j.dci.2019.05.00331075296
    [Google Scholar]
  2. Trypanosomiasis, human African (Sleeping sickness)2023Available from: https://www.who.int/news-room/factsheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed October 9, 2023.
  3. KennedyP.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness).The Lancet Neurology201312218619410.1016/S1474‑4422(12)70296‑X23260189
    [Google Scholar]
  4. LemeraniM. JumahF. BessellP. BiélerS. Ndung’uJ.M. Improved access to diagnostics for rhodesian sleeping sickness around a conservation area in malawi results in earlier detection of cases and reduced mortality.JEGH202010428028710.2991/jegh.k.200321.00132959623
    [Google Scholar]
  5. KioyD. MattockN. Control of sleeping sickness—time to integrate approaches. Lancet2005366948769569610.1016/S0140‑6736(05)67153‑X16125571
    [Google Scholar]
  6. SimarroP. FrancoJ. DiarraA. JanninJ. Epidemiology of Human African Trypanosomiasis.CLEP2014257
    [Google Scholar]
  7. OkelloA.L. WelburnS.C. The importance of veterinary policy in preventing the emergence and re-emergence of zoonotic disease: Examining the case of human african trypanosomiasis in Uganda.Front. Public Health2014221810.3389/fpubh.2014.0021825405148
    [Google Scholar]
  8. African trypanosomiasis — Level 3 cause the institute for health metrics and evaluation. IHME2019Available from: https://www.healthdata.org/results/gbd_summaries/2019/african-trypanosomiasis-level-3-cause (accessed October 12, 2023.
  9. BukachiS.A. WandibbaS. NyamongoI.K. The socio-economic burden of human African trypanosomiasis and the coping strategies of households in the South Western Kenya foci.PLoS Negl. Trop. Dis.20171110e000600210.1371/journal.pntd.000600229073144
    [Google Scholar]
  10. IlemobadeA.A. Tsetse and trypanosomosis in Africa : The challenges, the opportunities : Vector-borne diseases : Trypanosomosis.Onderstepoort J. Vet. Res.2009761354010.4102/ojvr.v76i1.5919967926
    [Google Scholar]
  11. CastilloE. Dea-AyuelaM.A. Bolás-FernándezF. RangelM. González-RosendeM.E. The kinetoplastid chemotherapy revisited: Current drugs, recent advances and future perspectives.Curr. Med. Chem.201017334027405110.2174/09298671079320534520939823
    [Google Scholar]
  12. FieldM.C. HornD. FairlambA.H. FergusonM.A.J. GrayD.W. ReadK.D. De RyckerM. TorrieL.S. WyattP.G. WyllieS. GilbertI.H. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need.Nat. Rev. Microbiol.201715421723110.1038/nrmicro.2016.19328239154
    [Google Scholar]
  13. De RyckerM. BaragañaB. DuceS.L. GilbertI.H. Challenges and recent progress in drug discovery for tropical diseases.Nature2018559771549850610.1038/s41586‑018‑0327‑430046073
    [Google Scholar]
  14. MukherjeeA. HossainZ. ErbenE. MaS. ChoiJ.Y. KimH.S. Identification of a small-molecule inhibitor that selectively blocks DNA-binding by Trypanosoma brucei replication protein A1.Nat. Commun.2023141439010.1038/s41467‑023‑39839‑x37474515
    [Google Scholar]
  15. Rojas-PirelaM. KemmerlingU. QuiñonesW. MichelsP.A.M. RojasV. Antimicrobial peptides (AMPs): Potential therapeutic strategy against trypanosomiases?Biomolecules202313459910.3390/biom1304059937189347
    [Google Scholar]
  16. JonesA. GrkovicT. SykesM. AveryV. Trypanocidal activity of marine natural products.Mar. Drugs201311104058408210.3390/md1110405824152565
    [Google Scholar]
  17. Human African trypanosomiasis (sleeping sickness)Available from: https://www.who.int/health-topics/human-african-trypanosomiasis (accessed Dec 20, 2023.
  18. MaxfieldL. BermudezR. Human african trypanosomiasis.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  19. PicozziK. FèvreE. OdiitM. CarringtonM. EislerM.C. MaudlinI. WelburnS.C. Sleeping sickness in Uganda: A Thin line between two fatal diseases.BMJ200533175271238124110.1136/bmj.331.7527.123816308383
    [Google Scholar]
  20. BuguetA. BourdonL. BouteilleB. CespuglioR. VincendeauP. RadomskiM.W. DumasM. The duality of sleeping sickness: Focusing on sleep.Sleep Medicine Reviews20015213915310.1053/smrv.2000.013012531051
    [Google Scholar]
  21. DumasM. BouteilleB. Human African trypanosomiasis.C. R. Seances Soc. Biol. Fil.199619043954088952890
    [Google Scholar]
  22. MeisnerJ. KatoA. LemeraniM.M. Mwamba MiakaE. Ismail TabanA. WakefieldJ. Rowhani-RahbarA. PigottD.M. MayerJ.D. RabinowitzP.M. The effect of livestock density on Trypanosoma brucei gambiense and T. b. rhodesiense: A causal inference-based approach.PLoS Negl. Trop. Dis.2022168e001015510.1371/journal.pntd.001015536037205
    [Google Scholar]
  23. NnkoH.J. NgonyokaA. SalekwaL. EstesA.B. HudsonP.J. GwakisaP.S. CattadoriI.M. Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania.J Vector Ecol2017421243310.1111/jvec.1223628504437
    [Google Scholar]
  24. WelburnS.C. MaudlinI. SimarroP.P. Controlling sleeping sickness – A review.Parasitology2009136141943194910.1017/S003118200900641619691861
    [Google Scholar]
  25. VickermanK. Developmental cycles and biology of pathogenic trypanosomes.British Medical Bulletin198541210511410.1093/oxfordjournals.bmb.a0720363928017
    [Google Scholar]
  26. SchusterS. LisackJ. SubotaI. ZimmermannH. ReuterC. MuellerT. MorriswoodB. EngstlerM. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife202110e6602810.7554/eLife.6602834355698
    [Google Scholar]
  27. SimarroP.P. CecchiG. PaoneM. FrancoJ.R. DiarraA. RuizJ.A. FèvreE.M. CourtinF. MattioliR.C. JanninJ.G. The Atlas of human African trypanosomiasis: A Contribution to global mapping of neglected tropical diseases.Int. J. Health Geogr.2010915710.1186/1476‑072X‑9‑5721040555
    [Google Scholar]
  28. KasoziK.I. ZirintundaG. SsempijjaF. BuyinzaB. AlzahraniK.J. MatamaK. NakimbugweH.N. AlkazmiL. OnanyangD. BogereP. OchiengJ.J. IslamS. MatovuW. NalumenyaD.P. BatihaG.E.S. OsuwatL.O. AbdelhamidM. ShenT. OmadangL. WelburnS.C. Epidemiology of trypanosomiasis in wildlife—implications for humans at the wildlife interface in africa.Front. Vet. Sci.2021862169910.3389/fvets.2021.62169934222391
    [Google Scholar]
  29. PalmerJ.J. Sensing sleeping sickness: Local symptom-making in south sudan.Medical Anthropology202039645747310.1080/01459740.2019.168997631852244
    [Google Scholar]
  30. LindnerA.K. PriottoG. The unknown risk of vertical transmission in sleeping sickness--a literature review.PLoS Negl. Trop. Dis.2010412e78310.1371/journal.pntd.000078321200416
    [Google Scholar]
  31. BarrettM.P. CroftS.L. Management of trypanosomiasis and leishmaniasis.British Medical Bulletin2012104117519610.1093/bmb/lds03123137768
    [Google Scholar]
  32. LaperchiaC. PalombaM. Seke EtetP.F. RodgersJ. BradleyB. MontagueP. Grassi-ZucconiG. KennedyP.G.E. BentivoglioM. Trypanosoma brucei invasion and t-cell infiltration of the brain parenchyma in experimental sleeping sickness: Timing and correlation with functional changes.PLoS Negl. Trop. Dis.20161012e000524210.1371/journal.pntd.000524228002454
    [Google Scholar]
  33. LikeufackA.C.L. BrunR. FomenaA. TrucP. Comparison of the in vitro drug sensitivity of Trypanosoma brucei gambiense strains from West and Central Africa isolated in the periods 1960–1995 and 1999–2004.Acta Tropica20061001-2111610.1016/j.actatropica.2006.09.00317078916
    [Google Scholar]
  34. ZoltnerM. CampagnaroG.D. TalevaG. BurrellA. CeroneM. LeungK.F. AchcarF. HornD. VaughanS. GadelhaC. ZíkováA. BarrettM.P. de KoningH.P. FieldM.C. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes.J Biol. Chem.2020295248331834710.1074/jbc.RA120.01235532354742
    [Google Scholar]
  35. VoogdT.E. VansterkenburgE.L. WiltingJ. JanssenL.H. Recent research on the biological activity of suramin.Pharmacol. Rev.19934521772038396782
    [Google Scholar]
  36. WiedemarN. HauserD.A. MäserP. 100 years of suramin.Antimicrob. Agents Chemother.2020643e01168-1910.1128/AAC.01168‑1931844000
    [Google Scholar]
  37. BarrettS.V. BarrettM.P. Anti-sleeping sickness drugs and cancer chemotherapy.Parasitology Today20001617910.1016/S0169‑4758(99)01560‑410637579
    [Google Scholar]
  38. FairlambA.H. Chemotherapy of human African trypanosomiasis: Current and future prospects.Trends in Parasitology2003191148849410.1016/j.pt.2003.09.00214580959
    [Google Scholar]
  39. ThomasJ.A. BakerN. HutchinsonS. DominicusC. TrenamanA. GloverL. AlsfordS. HornD. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling.PLoS Negl. Trop. Dis.20181211e000698010.1371/journal.pntd.000698030475806
    [Google Scholar]
  40. ItenM. MatovuE. BrunR. KaminskyR. Innate lack of susceptibility of Ugandan Trypanosoma brucei rhodesiense to DL-alpha-difluoromethylornithine (DFMO).Trop. Med. Parasitol.19954631901948533023
    [Google Scholar]
  41. WéryM. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT).Int. J. Antimicrob. Agents19944322723810.1016/0924‑8579(94)90012‑418611614
    [Google Scholar]
  42. DeniseH. BarrettM.P. Uptake and mode of action of drugs used against sleeping sickness.Biochemical Pharmacology20016111510.1016/S0006‑2952(00)00477‑911137702
    [Google Scholar]
  43. WatsonJ.A. Strub-WourgraftN. TarralA. RibeiroI. TarningJ. WhiteN.J. Pharmacokinetic-pharmacodynamic assessment of the hepatic and bone marrow toxicities of the new trypanoside fexinidazole.Antimicrob. Agents Chemother.2019634e02515-1810.1128/AAC.02515‑1830670439
    [Google Scholar]
  44. FairlambA.H. HornD. Melarsoprol resistance in african trypanosomiasis.Trends in Parasitology201834648149210.1016/j.pt.2018.04.00229705579
    [Google Scholar]
  45. AptedF.I.C. Present status of chemotherapy and chemoprohylaxis of human trypanosomiasis in the Eastern Hemisphere.Pharmacology & Therapeutics.198011239141310.1016/0163‑7258(80)90035‑27001502
    [Google Scholar]
  46. Al-NatourM.A. AlazzoA. GhaemmaghamiA.M. KimD.H. AlexanderC. LC-MS metabolomics comparisons of cancer cell and macrophage responses to methotrexate and polymer-encapsulated methotrexate.Int. J Pharmaceut. X2019110003610.1016/j.ijpx.2019.10003631993584
    [Google Scholar]
  47. De KoningH.P. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: Implications for cross-resistance with arsenicals.Mol. Pharmacol.200159358659210.1124/mol.59.3.58611179454
    [Google Scholar]
  48. BurriC. BrunR. Eflornithine for the treatment of human African trypanosomiasis.Parasitol. Res.200390S1Suppl. 1S49S5210.1007/s00436‑002‑0766‑512811548
    [Google Scholar]
  49. ShapiroT.A. EnglundP.T. Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs.Proc. Natl. Acad. Sci. U.S.A.199087395095410.1073/pnas.87.3.9502153980
    [Google Scholar]
  50. BacchiC.J. NathanH.C. HutnerS.H. McCannP.P. SjoerdsmaA. Polyamine metabolism: A potential therapeutic target in trypanosomes.Science1980210446733233410.1126/science.67753726775372
    [Google Scholar]
  51. VincentI.M. CreekD. WatsonD.G. KamlehM.A. WoodsD.J. WongP.E. BurchmoreR.J.S. BarrettM.P. A molecular mechanism for eflornithine resistance in African trypanosomes.PLoS Pathog.2010611e100120410.1371/journal.ppat.100120421124824
    [Google Scholar]
  52. SteverdingD. The development of drugs for treatment of sleeping sickness: A historical review.Parasites Vectors2010311510.1186/1756‑3305‑3‑1520219092
    [Google Scholar]
  53. NokA.J. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis.Parasitol. Res.2003901717910.1007/s00436‑002‑0799‑912743807
    [Google Scholar]
  54. PapagniR. NovaraR. MinardiM.L. FrallonardoL. PanicoG.G. PallaraE. CotugnoS. Ascoli BartoliT. GuidoG. De VitaE. RicciardiA. TotaroV. CamporealeM. SegalaF.V. BavaroD.F. PattiG. BrindicciG. PellegrinoC. MarianiM.F. PutotoG. SarmatiL. CastellaniC. SaracinoA. Di GennaroF. NicastriE. Human African Trypanosomiasis (sleeping sickness): Current knowledge and future challenges.Front. Trop. Dis.20234108700310.3389/fitd.2023.1087003
    [Google Scholar]
  55. RodenkoB. WannerM.J. AlkhaldiA.A.M. EbilomaG.U. BarnesR.L. KaiserM. BrunR. McCullochR. KoomenG.J. de KoningH.P. Targeting the parasite’s DNA with methyltriazenyl purine analogs is a safe, selective, and efficacious antitrypanosomal strategy.Antimicrob. Agents Chemother.201559116708671610.1128/AAC.00596‑1526282430
    [Google Scholar]
  56. SchmidC. RicherM. BilengeC.M.M. JosenandoT. ChappuisF. ManthelotC.R. NangoumaA. DouaF. AsumuP.N. SimarroP.P. BurriC. ImpamelI.I. Study Effectiveness of a 10-day melarsoprol schedule for the treatment of late-stage human African trypanosomiasis: Confirmation from a multinational study (Impamel II).J NFECT DIS2005191111922193110.1086/42992915871127
    [Google Scholar]
  57. BoschF. RosichL. The contributions of Paul Ehrlich to pharmacology: A tribute on the occasion of the centenary of his nobel prize.Pharmacology200882317117910.1159/00014958318679046
    [Google Scholar]
  58. Marques PortoR. AminoR. EliasM.C.Q. FariaM. SchenkmanS. Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi.Mol Biochem Parasitol 2002119226527110.1016/S0166‑6851(01)00430‑311814578
    [Google Scholar]
  59. CarterN.S. FairlambA.H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter.Nature1993361640817317610.1038/361173a08421523
    [Google Scholar]
  60. BarrettM.P. FairlambA.H. The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes.Parasitology Today199915413614010.1016/S0169‑4758(99)01414‑310322334
    [Google Scholar]
  61. Crespillo-AndújarC. ComecheB. HamerD.H. Arevalo-RodriguezI. Alvarez-DíazN. ZamoraJ. Pérez-MolinaJ.A. Use of benznidazole to treat chronic Chagas disease: An updated systematic review with a meta-analysis.PLoS Negl. Trop. Dis.2022165e001038610.1371/journal.pntd.001038635576215
    [Google Scholar]
  62. KoffA. MalinisM. DelgadoS. GrantM. AhmadT. Under our very eyes.N. Engl. J. Med.20203821095295710.1056/NEJMcps190283532130818
    [Google Scholar]
  63. BattistaT. ColottiG. IlariA. FiorilloA. Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases.Molecules2020258192410.3390/molecules2508192432326257
    [Google Scholar]
  64. BeigM. OellienF. GaroffL. NoackS. Krauth-SiegelR.L. SelzerP.M. Trypanothione reductase: A target protein for a combined in vitro and in silico screening approach.PLoS Negl. Trop. Dis.201596e000377310.1371/journal.pntd.000377326042772
    [Google Scholar]
  65. VázquezK. PaulinoM. SalasC.O. Zarate-RamosJ.J. VeraB. RiveraG. Trypanothione Reductase: A Target for the Development of Anti- Trypanosoma Cruzi Drugs.MRMC201717
    [Google Scholar]
  66. ShamesS.L. FairlambA.H. CeramiA. WalshC.T. Purification and characterization of trypanothione reductase from Crithidia fasciculata, a new member of the family of disulfide-containing flavoprotein reductases.Biochemistry198625123519352610.1021/bi00360a0073718941
    [Google Scholar]
  67. KhanM.O.F. Trypanothione reductase: A Viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design.Drug Target Insights2007210.1177/11773928070020000721901070
    [Google Scholar]
  68. KellyJ.M. TaylorM.C. SmithK. HunterK.J. FairlambA.H. Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over‐express trypanothione reductase: Sensitivity towards agents that are thought to induce oxidative stress.Eur. J. Biochem.19932181293710.1111/j.1432‑1033.1993.tb18348.x8243474
    [Google Scholar]
  69. TovarJ. FairlambA.H. Extrachromosomal, homologous expression of trypanothione reductase and its complementary mRNA in Trypanosoma cruzi.Nucleic Acids Res.199624152942294910.1093/nar/24.15.29428760878
    [Google Scholar]
  70. MüllerS. LiebauE. WalterR.D. Krauth-SiegelR.L. Thiol-based redox metabolism of protozoan parasites.Trends Parasitol200319732032810.1016/S1471‑4922(03)00141‑712855383
    [Google Scholar]
  71. ScottiL. MendonçaF.J. da SilvaM.S. ScottiM.T. Enzymatic targets in trypanosoma brucei.CPPS201617324325910.2174/138920371799916022617375426983886
    [Google Scholar]
  72. GabelliS.B. McLellanJ.S. MontalvettiA. OldfieldE. DocampoR. AmzelL.M. Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi : Implications for drug design.Proteins2006621808810.1002/prot.2075416288456
    [Google Scholar]
  73. ParkJ. PandyaV.R. EzekielS.J. BerghuisA.M. Phosphonate and bisphosphonate inhibitors of farnesyl pyrophosphate synthases: A structure-guided perspective.Front Chem.2021861272810.3389/fchem.2020.61272833490038
    [Google Scholar]
  74. Fredo NaciukF. do Nascimento FariaJ. Gonçalves EufrásioA. Torres CordeiroA. BruderM. Development of selective steroid inhibitors for the glucose-6-phosphate dehydrogenase from Trypanosoma cruzi.ACS Med. Chem. Lett.20201161250125610.1021/acsmedchemlett.0c0010632551008
    [Google Scholar]
  75. HoH. ChengM. ChiuD.T. Glucose-6-phosphate dehydrogenase – from oxidative stress to cellular functions and degenerative diseases.Redox Report200712310911810.1179/135100007X20020917623517
    [Google Scholar]
  76. WoodT. Physiological functions of the pentose phosphate pathway.Cell Biochem. Funct.19864424124710.1002/cbf.2900404033539386
    [Google Scholar]
  77. CordeiroA.T. ThiemannO.H. MichelsP.A.M. Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites.Bioorg Med Chem20091762483248910.1016/j.bmc.2009.01.06819231202
    [Google Scholar]
  78. CronínC.N. NolanD.P. Paul VoorheisH. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.FEBS Letters19892441263010.1016/0014‑5793(89)81154‑82924907
    [Google Scholar]
  79. DuffieuxF. Van RoyJ. MichelsP.A.M. OpperdoesF.R. Molecular characterization of the first two enzymes of the pentose-phosphate pathway of Trypanosoma brucei.J Biol. Chem.200027536275592756510.1074/jbc.M00426620010867008
    [Google Scholar]
  80. ColeyA.F. DodsonH.C. MorrisM.T. MorrisJ.C. Glycolysis in the african trypanosome: Targeting enzymes and their subcellular compartments for therapeutic development.Mol. Biol. Inte.2011201111010.4061/2011/12370222091393
    [Google Scholar]
  81. MichelsP.A.M. BringaudF. HermanM. HannaertV. Metabolic functions of glycosomes in trypanosomatids.Biochim. Biophys. Acta, Mol. Cell Res.2006176314631477
    [Google Scholar]
  82. ColasanteC. EllisM. RuppertT. VonckenF. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei .Proteomics20066113275329310.1002/pmic.20050066816622829
    [Google Scholar]
  83. Igoillo-EsteveM. CazzuloJ.J. The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: Its role in the defense of the parasite against oxidative stress.Mol Biochem Parasitol2006149217018110.1016/j.molbiopara.2006.05.00916828178
    [Google Scholar]
  84. Yagüe-CapillaM. Castillo-AcostaV.M. Bosch-NavarreteC. Ruiz-PérezL.M. González-PacanowskaD. A mitochondrial orthologue of the dNTP triphosphohydrolase SAMHD1 is essential and controls pyrimidine homeostasis in trypanosoma brucei.ACS Infect. Dis.20217231833210.1021/acsinfecdis.0c0055133417760
    [Google Scholar]
  85. FijolekA. HoferA. ThelanderL. Expression, purification, characterization, and in vivo targeting of trypanosome CTP synthetase for treatment of African sleeping sickness.J Biol. Chem.200728216118581186510.1074/jbc.M61158020017331943
    [Google Scholar]
  86. HoferA. SteverdingD. ChabesA. BrunR. ThelanderL. Trypanosoma brucei CTP synthetase: A target for the treatment of African sleeping sickness.Proc. Natl. Acad. Sci. U.S.A.200198116412641610.1073/pnas.11113949811353848
    [Google Scholar]
  87. SteevesC.H. BearneS.L. Activation and inhibition of CTP synthase from Trypanosoma brucei, the causative agent of African sleeping sickness.Bioorg Med Chem Lett201121185188519010.1016/j.bmcl.2011.07.05421840216
    [Google Scholar]
  88. BarryR.M. BitbolA.F. LorestaniA. CharlesE.J. HabrianC.H. HansenJ.M. LiH.J. BaldwinE.P. WingreenN.S. KollmanJ.M. GitaiZ. Large-scale filament formation inhibits the activity of CTP synthetase.eLife20143e0363810.7554/eLife.0363825030911
    [Google Scholar]
  89. JonesC. AndersonS. SinghaU.K. ChaudhuriM. Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei.Parasitol. Res.2008102583584410.1007/s00436‑007‑0817‑z18193284
    [Google Scholar]
  90. VermaS. DixitR. PandeyK.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets.Front. Pharmacol.2016710710.3389/fphar.2016.0010727199750
    [Google Scholar]
  91. GrabD.J. Garcia-GarciaJ.C. NikolskaiaO.V. KimY.V. BrownA. PardoC.A. ZhangY. BeckerK.G. WilsonB.A. de A LimaA.P. ScharfsteinJ. DumlerJ.S. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.PLoS Negl. Trop. Dis.200937e47910.1371/journal.pntd.000047919621073
    [Google Scholar]
  92. JohéP. JaenickeE. NeuweilerH. SchirmeisterT. KerstenC. HellmichU.A. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes.J Biol. Chem.202129610056510.1016/j.jbc.2021.10056533745969
    [Google Scholar]
  93. KamphuisI.G. KalkK.H. SwarteM.B.A. DrenthJ. Structure of papain refined at 1.65 Å resolution.J. Mol. Biol.1984179223325610.1016/0022‑2836(84)90467‑46502713
    [Google Scholar]
  94. RawlingsN.D. BarrettA.J. ThomasP.D. HuangX. BatemanA. FinnR.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database.Nucleic Acids Res.201846D1D624D63210.1093/nar/gkx113429145643
    [Google Scholar]
  95. BondC.S. ZhangY. BerrimanM. CunninghamM.L. FairlambA.H. HunterW.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors.Structure199971818910.1016/S0969‑2126(99)80011‑210368274
    [Google Scholar]
  96. BonnetB. SoullezD. GiraultS. MaesL. LandryV. Davioud-CharvetE. SergheraertC. Trypanothione reductase inhibition/trypanocidal activity relationships in a 1,4-bis(3-aminopropyl)piperazine series.Bioorg Med Chem2000819510310.1016/S0968‑0896(99)00268‑010968268
    [Google Scholar]
  97. ChibaleK. VisserM. van SchalkwykD. SmithP.J. SaravanamuthuA. FairlambA.H. Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents.Tetrahedron200359132289229610.1016/S0040‑4020(03)00240‑0
    [Google Scholar]
  98. GiraultS. Davioud-CharvetE. MaesL. DubremetzJ.F. DebreuM.A. LandryV. SergheraertC. Potent and specific inhibitors of trypanothione reductase from Trypanosoma cruzi.Bioorg Med Chem20019483784610.1016/S0968‑0896(00)00312‑611354666
    [Google Scholar]
  99. DocampoR. MorenoS.N.J. CruzF.S. Enhancement of the cytotoxicity of crystal violet against Trypanosoma cruzi in the blood by ascorbate.Mol Biochem Parasitol1988272-324124710.1016/0166‑6851(88)90043‑62830513
    [Google Scholar]
  100. WaltonJ.G.A. JonesD.C. KiuruP. DurieA.J. WestwoodN.J. FairlambA.H. Synthesis and evaluation of indatraline-based inhibitors for trypanothione reductase.ChemMedChem20116232132810.1002/cmdc.20100044221275055
    [Google Scholar]
  101. JonesD.C. ArizaA. ChowW.H.A. OzaS.L. FairlambA.H. Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi.Mol Biochem Parasitol20101691121910.1016/j.molbiopara.2009.09.00219747949
    [Google Scholar]
  102. PattersonS. JonesD.C. ShanksE.J. FrearsonJ.A. GilbertI.H. WyattP.G. FairlambA.H. Synthesis and evaluation of 1‐(1‐(Benzo[ b ]thiophen‐2‐yl)cyclohexyl)piperidine (BTCP) analogues as inhibitors of trypanothione reductase.ChemMedChem2009481341135310.1002/cmdc.20090009819557802
    [Google Scholar]
  103. El-WaerA. DouglasK.T. SmithK. FairlambA.H. Synthesis of N-benzyloxycarbonyl-l-cysteinylglycine 3-dimethylaminopropylamide disulfide: A cheap and convenient new assay for trypanothione reductase.Analyti. Biochemist.1991198121221610.1016/0003‑2697(91)90531‑W1789428
    [Google Scholar]
  104. GarrardE.A. BormanE.C. CookB.N. PikeE.J. AlbergD.G. Inhibition of trypanothione reductase by substrate analogues.Org. Lett.20002233639364210.1021/ol006542311073664
    [Google Scholar]
  105. SmithH.K. BradleyM. Comparison of resin and solution screening methodologies in combinatorial chemistry and the identification of a 100 nM inhibitor of trypanothione reductase.J. Comb. Chem.19991432633210.1021/cc990013c10748738
    [Google Scholar]
  106. DixonM.J. MaurerR.I. BiggiC. OyarzabalJ. EssexJ.W. BradleyM. Mechanism and structure–activity relationships of norspermidine-based peptidic inhibitors of trypanothione reductase.Bioorg Med Chem200513144513452610.1016/j.bmc.2005.04.03915922604
    [Google Scholar]
  107. PonasikJ.A. StricklandC. FaermanC. SavvidesS. KarplusP.A. GanemB. Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase.Biochemical Journal1995311237137510.1042/bj31103717487870
    [Google Scholar]
  108. HamiltonC.J. SaravanamuthuA. FairlambA.H. EgglestonI.M. Benzofuranyl 3,5-bis-Polyamine derivatives as time-Dependent inhibitors of trypanothione reductase.Bioorg Med Chem200311173683369310.1016/S0968‑0896(03)00344‑412901914
    [Google Scholar]
  109. de Melo SilvaV.G. da ConceiçãoJ.M. Vieira Costa SilvaC.C. LealA.C. AraújoD.L. NunesJ.S. da SilvaE.T.N. da SilvaA.J.F.S. de Barros DiasM.C.H. Lima LeiteA.C. Outlining the molecules tested In vivo for chagas disease, malaria, and schistosomiasis over the last six years - a literature review focused on new synthetic drug identities and repurposing strategies.CMC202330262932297610.2174/092986732966622093011213636200257
    [Google Scholar]
  110. O’SullivanM.C. ZhouQ. LiZ. DurhamT.B. RattendiD. LaneS. BacchiC.J. Polyamine derivatives as inhibitors of trypanothione reductase and assessment of their trypanocidal activities.Bioorg Med Chem19975122145215510.1016/S0968‑0896(97)00157‑09459012
    [Google Scholar]
  111. O’sullivanM.C. DalrympleD.M. ZhouQ. Inhibiting effects of spermidine derivatives on Trypanosoma cruzi trypanothione reductase.J. Enzyme Inhib.19961129711410.3109/147563696090365379204399
    [Google Scholar]
  112. BonnetB. SoullezD. Davioud-CharvetE. LandryV. HorvathD. SergheraertC. New spermine and spermidine derivatives as potent inhibitors of Trypanosoma cruzi Trypanothione Reductase.Bioorg Med Chem1997571249125610.1016/S0968‑0896(97)00070‑99377084
    [Google Scholar]
  113. BensonT.J. McKieJ.H. GarforthJ. BorgesA. FairlambA.H. DouglasK.T. Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures.Biochemical . J.1992286191110.1042/bj28600091355650
    [Google Scholar]
  114. ChanC. YinH. GarforthJ. McKieJ.H. JaouhariR. SpeersP. DouglasK.T. RockP.J. YardleyV. CroftS.L. FairlambA.H. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs.J. Med. Chem.199841214815610.1021/jm960814j9457238
    [Google Scholar]
  115. Gutierrez-CorreaJ. FairlambA.H. StoppaniA.O.M. Trypanosoma Cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals.Free Radical Research200134436337810.1080/1071576010030031111328673
    [Google Scholar]
  116. RivarolaH.W. Paglini-OlivaP.A. H.W. Rivarola P.A. Paglini-Oliva Trypanosoma cruzi trypanothione reductase inhibitors: Phenothiazines and related compounds modify experimental Chagas’ disease evolution.CDTCHD200221435210.2174/156800602333774512769656
    [Google Scholar]
  117. JacobyE.M. SchlichtingI. LantwinC.B. KabschW. Krauth-SiegelR.L. Crystal structure of theTrypanosoma cruzi trypanothione reductase·mepacrine complex.Proteins1996241738010.1002/(SICI)1097‑0134(199601)24:1<73::AID‑PROT5>3.0.CO;2‑P8628734
    [Google Scholar]
  118. SaravanamuthuA. VickersT.J. BondC.S. PetersonM.R. HunterW.N. FairlambA.H. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase.J Biol. Chem.200427928294932950010.1074/jbc.M40318720015102853
    [Google Scholar]
  119. GarforthJ. YinH. McKieJ.H. DouglasK.T. FairlambA.H. Rational design of selective ligands for trypanothione reductase from trypanosoma cruz structural effects on the inhibition by dibenzazepines based on imipramine.J. Enzyme Inhib.199712316117310.3109/147563697090293129314113
    [Google Scholar]
  120. GalarretaB.C. SifuentesR. CarrilloA.K. SanchezL. AmadoM.R.I. MaruendaH. The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors.Bioorg Med Chem200816146689669510.1016/j.bmc.2008.05.07418558492
    [Google Scholar]
  121. Ventura PintoA. Lisboa de CastroS. The trypanocidal activity of naphthoquinones: A review.Molecules200914114570459010.3390/molecules1411457019924086
    [Google Scholar]
  122. Jockers-ScherüblM.C. SchirmerR.H. Krauth-SiegelR.L. Trypanothione reductase from Trypanosoma cruzi: Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds.Eur. J. Biochem1989180226727210.1111/j.1432‑1033.1989.tb14643.x2647489
    [Google Scholar]
  123. LanfranchiD.A. Cesar-RodoE. BertrandB. HuangH.H. DayL. JohannL. ElhabiriM. BeckerK. WilliamsD.L. Davioud-CharvetE. Synthesis and biological evaluation of 1,4-naphthoquinones and quinoline-5,8-diones as antimalarial and schistosomicidal agents.Org. Biomol. Chem.201210316375638710.1039/c2ob25812a22777178
    [Google Scholar]
  124. WardmanP. Some reactions and properties of nitro radical-anions important in biology and medicine.Environ. Health Perspect.19856430932010.1289/ehp.85643093830700
    [Google Scholar]
  125. KubataB.K. KabututuZ. NozakiT. MundayC.J. FukuzumiS. OhkuboK. LazarusM. MaruyamaT. MartinS.K. DuszenkoM. UradeY. A key role for old yellow enzyme in the metabolism of drugs by Trypanosoma cruzi. J. Exp. Med200219691241125210.1084/jem.2002088512417633
    [Google Scholar]
  126. IribarneF. PaulinoM. AguileraS. MurphyM. TapiaO. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites. J. Mol. Mod.20028517318310.1007/s00894‑002‑0082‑012111385
    [Google Scholar]
  127. Martinez-MerinoV. CerecettoH. CoMFA-SIMCA model for antichagasic nitrofurazone derivatives.Bioorg Med Chem2001941025103010.1016/S0968‑0896(00)00320‑511354658
    [Google Scholar]
  128. FaermanC.H. SavvidesS.N. StricklandC. BreidenbachM.A. PonasikJ.A. GanemB. RipollD. Luise Krauth-SiegelR. Andrew KarplusP. Charge is the major discriminating factor for glutathione reductase versus trypanothione reductase inhibitors.Bioorg Med Chem1996481247125310.1016/0968‑0896(96)00120‑48879546
    [Google Scholar]
  129. FournetA. InchaustiA. YaluffG. De AriasA.R. GuinaudeauH. BrunetonJ. BreidenbachM.A. KarplusP.A. FaermanC.H. Trypanocidal bisbenzylisoquinoline alkaloids are inhibitors of trypanothione reductase.J. Enzyme Inhib.19981311910.3109/147563698090358239879510
    [Google Scholar]
  130. PorcalW. HernándezP. BoianiM. AguirreG. BoianiL. ChidichimoA. CazzuloJ.J. CampilloN.E. PaezJ.A. CastroA. Krauth-SiegelR.L. DaviesC. BasombríoM.Á. GonzálezM. CerecettoH. In vivo anti-Chagas vinylthio-, vinylsulfinyl-, and vinylsulfonylbenzofuroxan derivatives.J. Med. Chem.200750246004601510.1021/jm070604e17960923
    [Google Scholar]
  131. GallwitzH. BonseS. Martinez-CruzA. SchlichtingI. SchumacherK. Krauth-SiegelR.L. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallographic, kinetic, and spectroscopic studies.J. Med. Chem.199942336437210.1021/jm980471k9986706
    [Google Scholar]
  132. CotaB.B. RosaL.H. CaligiorneR.B. RabelloA.L.Ã.T. Almeida AlvesT.Ã.M. RosaC.A. ZaniC.L. Altenusin, a biphenyl isolated from the endophytic fungus Alternaria sp., inhibits trypanothione reductase from Trypanosoma cruzi.FEMS Microbiology Letters2008285217718210.1111/j.1574‑6968.2008.01221.x18557945
    [Google Scholar]
  133. RodanG.A. Mechanisms of action of bisphosphonatesAnnu. Rev. Pharmacol. Toxicol.199838137538810.1146/annurev.pharmtox.38.1.3759597160
    [Google Scholar]
  134. BrownD.L. RobbinsR. Developments in the therapeutic applications of bisphosphonates.The J of Cli. Pharma199939765166010.1177/0091270992200827210392318
    [Google Scholar]
  135. MartinM.B. ArnoldW. HeathH.T.III UrbinaJ.A. OldfieldE. Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis.Biochem Biophys Res Commun1999263375475810.1006/bbrc.1999.140410512752
    [Google Scholar]
  136. AaronJ.A. ChristiansonD.W. Trinuclear metal clusters in catalysis by terpenoid synthases.Pure App. Chem.20108281585159710.1351/PAC‑CON‑09‑09‑3721562622
    [Google Scholar]
  137. LiuY.L. LindertS. ZhuW. WangK. McCammonJ.A. OldfieldE. Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site.Proc. Natl. Acad. Sci. U.S.A.201411125E2530E253910.1073/pnas.140906111124927548
    [Google Scholar]
  138. HuangC.H. GabelliS.B. OldfieldE. AmzelL.M. Binding of nitrogen‐containing bisphosphonates (N‐BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer.Proteins201078488889910.1002/prot.2261419876942
    [Google Scholar]
  139. SzajnmanS.H. MontalvettiA. WangY. DocampoR. RodriguezJ.B. Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase.Bioorg Med Chem Lett200313193231323510.1016/S0960‑894X(03)00663‑212951099
    [Google Scholar]
  140. AripiralaS. SzajnmanS.H. JakoncicJ. RodriguezJ.B. DocampoR. GabelliS.B. AmzelL.M. Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase.J. Med. Chem.201255146445645410.1021/jm300425y22715997
    [Google Scholar]
  141. GuptaS. CordeiroA.T. MichelsP.A.M. Glucose-6-phosphate dehydrogenase is the target for the trypanocidal action of human steroids.Mol Biochem Parasitol2011176211211510.1016/j.molbiopara.2010.12.00621185333
    [Google Scholar]
  142. CordeiroA.T. ThiemannO.H. 16-Bromoepiandrosterone, an activator of the mammalian immune system, inhibits glucose 6-phosphate dehydrogenase from Trypanosoma cruzi and is toxic to these parasites grown in culture.Bioorg Med Chem201018134762476810.1016/j.bmc.2010.05.00820570159
    [Google Scholar]
  143. OrtízC. MoracaF. LaverriereM. JordanA. HamiltonN. CominiM.A. Glucose 6-phosphate dehydrogenase from trypanosomes: Selectivity for steroids and chemical validation in bloodstream Trypanosoma brucei. Molecules202126235810.3390/molecules2602035833445584
    [Google Scholar]
  144. OrtizC. MoracaF. MedeirosA. BottaM. HamiltonN. CominiM. Binding mode and selectivity of steroids towards glucose-6-phosphate dehydrogenase from the pathogen trypanosoma cruzi.Molecules201621336810.3390/molecules2103036826999093
    [Google Scholar]
  145. ContiP. PintoA. WongP.E. MajorL.L. TamboriniL. IannuzziM.C. De MicheliC. BarrettM.P. SmithT.K. Synthesis and in vitro/in vivo evaluation of the antitrypanosomal activity of 3-bromoacivicin, a potent CTP synthetase inhibitor.ChemMedChem20116232933310.1002/cmdc.20100041721275056
    [Google Scholar]
  146. BrunoS. PintoA. ParediG. TamboriniL. De MicheliC. La PietraV. MarinelliL. NovellinoE. ContiP. MozzarelliA. Discovery of covalent inhibitors of glyceraldehyde-3-phosphate dehydrogenase, a target for the treatment of malaria.J. Med. Chem.201457177465747110.1021/jm500747h25137375
    [Google Scholar]
  147. RoyA.C. LunnF.A. BearneS.L. Inhibition of CTP synthase from Escherichia coli by xanthines and uric acids.Bioorg Med Chem Lett201020114114410.1016/j.bmcl.2009.11.01720004571
    [Google Scholar]
  148. UmumararunguT. IsaacsM. HoppeH. GoosenE. KhanyeS. Re-screening and preliminary in vitro evaluation of resorcinol based Hsp90 inhibitors for potential protocidal activity.S. Afr. j. chem.202377242910.17159/0379‑4350/2023/v77a04
    [Google Scholar]
  149. GianniniG. BattistuzziG. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites.Bioorg Med Chem Lett201525346246510.1016/j.bmcl.2014.12.04825547934
    [Google Scholar]
  150. NeckersL. BlaggB. HaysteadT. TrepelJ.B. WhitesellL. PicardD. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development.Cell Stress and Chaperones201823446748210.1007/s12192‑018‑0877‑229392504
    [Google Scholar]
  151. MeyerK.J. ShapiroT.A. Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo.J. Infect. Dis.2013208348949910.1093/infdis/jit17923630365
    [Google Scholar]
  152. SahaA. Targeting cysteine proteases and their inhibitors to combat trypanosomiasis.Curr Med Chem202330
    [Google Scholar]
  153. SteverdingD. RushworthS.A. FloreaB.I. OverkleeftH.S. Trypanosoma brucei: Inhibition of cathepsin L is sufficient to kill bloodstream forms.Mol Biochem Parasitol202023511124610.1016/j.molbiopara.2019.11124631743688
    [Google Scholar]
  154. ChenY.T. LiraR. HansellE. McKerrowJ.H. RoushW.R. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors.Bioorg Med Chem Lett200818225860586310.1016/j.bmcl.2008.06.01218585034
    [Google Scholar]
  155. LavradoJ. MackeyZ. HansellE. McKerrowJ.H. PauloA. MoreiraR. Antitrypanosomal and cysteine protease inhibitory activities of alkyldiamine cryptolepine derivatives.Bioorg Med Chem Lett201222196256626010.1016/j.bmcl.2012.07.10422926067
    [Google Scholar]
  156. MosiR. BairdI.R. CoxJ. AnastassovV. CameronB. SkerljR.T. FrickerS.P. Rhenium inhibitors of cathepsin B (ReO(SYS)X (Where Y = S, py; X = Cl, Br, SPhOMe- p )): Synthesis and mechanism of inhibition.J. Med. Chem.200649175262527210.1021/jm060357z16913715
    [Google Scholar]
  157. SmithsonD.C. LeeJ. ShelatA.A. PhillipsM.A. GuyR.K. Discovery of potent and selective inhibitors of Trypanosoma brucei ornithine decarboxylase.J Biol. Chem.201028522167711678110.1074/jbc.M109.08158820220141
    [Google Scholar]
  158. DuX. HansellE. EngelJ.C. CaffreyC.R. CohenF.E. McKerrowJ.H. Aryl ureas represent a new class of anti-trypanosomal agents.Chem. Bio20007973374210.1016/S1074‑5521(00)00018‑110980453
    [Google Scholar]
  159. FerreiraL.G. AndricopuloA.D. Targeting cysteine proteases in trypanosomatid disease drug discovery.Pharmacol Therapeut.2017180496110.1016/j.pharmthera.2017.06.00428579388
    [Google Scholar]
  160. GuidoR.V.C. OlivaG. AndricopuloA.D. Structure- and ligand-based drug design approaches for neglected tropical diseases.Pure App. Chem.20128491857186610.1351/PAC‑CON‑11‑11‑07
    [Google Scholar]
  161. BragaS.F.P. SantosV.C. VieiraR.P. SilvaE.B. MontiL. KrakeS.H. MartinezP.D.G. DiasL.C. CaffreyC.R. Siqueira-NetoJ.L. de OliveiraR.B. FerreiraR.S. From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds.Eur. J. Med. Chem.202224411487610.1016/j.ejmech.2022.11487636343429
    [Google Scholar]
  162. WaagT. GelhausC. RathJ. StichA. LeippeM. SchirmeisterT. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.Bioorg Med Chem Lett201020185541554310.1016/j.bmcl.2010.07.06220692829
    [Google Scholar]
  163. WattsK.R. RatnamJ. AngK.H. TenneyK. ComptonJ.E. McKerrowJ. CrewsP. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi.Bioorg Med Chem20101872566257410.1016/j.bmc.2010.02.03420303767
    [Google Scholar]
  164. EttariR. PrevitiS. MaioranaS. AllegraA. SchirmeisterT. GrassoS. ZappalàM. Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense.Natural. Product Research201933243577358110.1080/14786419.2018.148392729897253
    [Google Scholar]
  165. CockI.E. CheesmanM.J. A review of the antimicrobial properties of cyanobacterial natural products.Molecules20232820712710.3390/molecules2820712737894609
    [Google Scholar]
  166. OliS. AbdelmohsenU. HentschelU. SchirmeisterT. Identification of plakortide E from the Caribbean sponge Plakortis halichondroides as a trypanocidal protease inhibitor using bioactivity-guided fractionation.Marine Drugs20141252614262210.3390/md1205261424798927
    [Google Scholar]
  167. SteverdingD. da NóbregaF.R. RushworthS.A. de SousaD.P. Trypanocidal and cysteine protease inhibitory activity of isopentyl caffeate is not linked in Trypanosoma brucei.Parasitol. Res.2016115114397440310.1007/s00436‑016‑5227‑727535679
    [Google Scholar]
  168. WallR.J. RicoE. LukacI. ZuccottoF. ElgS. GilbertI.H. FreundY. AlleyM.R.K. FieldM.C. WyllieS. HornD. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.Proc. Natl. Acad. Sci. U.S.A.2018115389616962110.1073/pnas.180791511530185555
    [Google Scholar]
  169. SharmaA. CiprianoM. FerrinsL. HajdukS.L. Mensa-WilmotK. Hypothesis-generating proteome perturbation to identify NEU-4438 and acoziborole modes of action in the African Trypanosome.iScience2022251110530210.1016/j.isci.2022.10530236304107
    [Google Scholar]
  170. Kande Betu KumesuV. Mutombo KalonjiW. BardonneauC. Valverde MordtO. Ngolo TeteD. BlessonS. SimonF. DelhommeS. BernhardS. Nganzobo NgimaP. Mahenzi MbemboH. Fina LubakiJ.P. Lumeya VuvuS. Kuziena MindeleW. Ilunga Wa KyhiM. Mandula MokengeG. Kaninda BadibabiL. Kasongo BonamaA. Kavunga LukulaP. LumbalaC. ScherrerB. Strub-WourgaftN. TarralA. Safety and efficacy of oral fexinidazole in children with gambiense human African trypanosomiasis: A multicentre, single-arm, open-label, phase 2–3 trial.Lancet Glob. Health20221011e1665e167410.1016/S2214‑109X(22)00338‑236179736
    [Google Scholar]
  171. WittlinS. MäserP. From magic bullet to magic bomb: Reductive bioactivation of antiparasitic agents.ACS Infect. Dis.20217102777278610.1021/acsinfecdis.1c0011834472830
    [Google Scholar]
  172. García-EstradaC. Pérez-PertejoY. Domínguez-AsenjoB. HolandaV.N. MurugesanS. Martínez-ValladaresM. Balaña-FouceR. RegueraR.M. Further investigations of nitroheterocyclic compounds as potential antikinetoplastid drug candidates.Biomolecules202313463710.3390/biom1304063737189384
    [Google Scholar]
  173. BernhardS. KaiserM. BurriC. MäserP. Fexinidazole for human african trypanosomiasis, the fruit of a successful public-private partnership.Diseases20221049010.3390/diseases1004009036278589
    [Google Scholar]
  174. EbilomaG.U. IgoliJ.O. KatsoulisE. DonachieA.M. EzeA. GrayA.I. de KoningH.P. Bioassay-guided isolation of active principles from Nigerian medicinal plants identifies new trypanocides with low toxicity and no cross-resistance to diamidines and arsenicals.J. Ethnopharmacol.201720225626410.1016/j.jep.2017.03.02828336470
    [Google Scholar]
  175. EbilomaG.U. KatsoulisE. IgoliJ.O. GrayA.I. De KoningH.P. Multi-target mode of action of a clerodane-type diterpenoid from polyalthia longifolia targeting african trypanosomes.Sci. Rep.201881461310.1038/s41598‑018‑22908‑329545637
    [Google Scholar]
  176. MathisA.M. HolmanJ.L. SturkL.M. IsmailM.A. BoykinD.W. TidwellR.R. HallJ.E. Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes.Antimicrob. Agents Chemother.20065062185219110.1128/AAC.00192‑0616723581
    [Google Scholar]
  177. MercerL. BowlingT. PeralesJ. FreemanJ. NguyenT. BacchiC. YarlettN. DonR. JacobsR. NareB. 2,4-Diaminopyrimidines as potent inhibitors of Trypanosoma brucei and identification of molecular targets by a chemical proteomics approach.PLoS Negl. Trop. Dis.201152e95610.1371/journal.pntd.000095621347454
    [Google Scholar]
  178. YangG. ZhuW. WangY. HuangG. ByunS.Y. ChoiG. LiK. HuangZ. DocampoR. OldfieldE. NoJ.H. In vitro and in vivo activity of multitarget inhibitors against Trypanosoma brucei.ACS Infect. Dis.20151838839810.1021/acsinfecdis.5b0006826295062
    [Google Scholar]
  179. BowlingT. MercerL. DonR. JacobsR. NareB. Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human African trypanosomiasis.Int J Parasitol Drugs Drug Resist2012226227010.1016/j.ijpddr.2012.02.00224533287
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073293708240416113543
Loading
/content/journals/cchts/10.2174/0113862073293708240416113543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test