Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Diffuse Large B-Cell Lymphoma (DLBCL) is the most common B-cell lymphoma type. Detoxification and tumor elimination formula, a herbal compound, can potentially treat lymphoma. In this study, network pharmacology and molecular docking approaches were utilized to reveal the potential mechanism of the Jiedu Xiaoliu formula (JDXLF) against DLBCL.

Methods

Active compounds and targets of JDXLF were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Targets related to DLBCL were retrieved from GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. Protein-Protein Interaction (PPI) networks were established to screen core targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using R 4.2.2. Model interactions between potential disease targets and pharmacologically active compounds were determined by molecular docking.

Results

Screening of 14 herbal active ingredients yielded 129 active compounds and 1414 disease targets for DLBCL. GO annotations showed that the effects of JDXLF were related to protein phosphorylation and reactive oxygen species response. KEGG pathway enrichment analysis indicated that the detoxification and elimination of tumors formula mainly regulated apoptosis pathways. Nobiletin showed good interaction with AKT1, TP53, and CASP3, and the cell counting kit-8 (CCK-8) assay confirmed that nobiletin inhibited the proliferation of SU-DHL-4 cells. Western blot analysis showed that nobiletin downregulated the expressions of p-PI3K, p-AKT, and BCL-2 proteins and upregulated those of cleaved-caspase3 and BAX.

Conclusion

Our findings preliminarily suggested that the active ingredient of JDXLF, nobiletin, may induce apoptosis in Diffuse Large B-Cell Lymphoma SU-DHL-4 cells by regulating the PI3K/AKT signaling pathway.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073290877240604102022
2024-06-20
2025-10-15
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/11/CCHTS-28-11-05.html?itemId=/content/journals/cchts/10.2174/0113862073290877240604102022&mimeType=html&fmt=ahah

References

  1. MartelliM. FerreriA.J.M. AgostinelliC. Di RoccoA. PfreundschuhM. PileriS.A. Diffuse large B-cell lymphoma.Crit. Rev. Oncol. Hematol.201387214617110.1016/j.critrevonc.2012.12.009 23375551
    [Google Scholar]
  2. HuntK.E. ReichardK.K. Diffuse large B-cell lymphoma.Arch. Pathol. Lab. Med.2008132111812410.5858/2008‑132‑118‑DLBL 18181663
    [Google Scholar]
  3. ZelenetzA.D. GordonL.I. AbramsonJ.S. AdvaniR.H. AndreadisB. BartlettN.L. BuddeL.E. CaimiP.F. ChangJ.E. ChristianB. DeVosS. DholariaB. FayadL.E. HabermannT.M. HamidM.S. Hernandez-IlizaliturriF. HuB. KaminskiM.S. KarimiY. KelseyC.R. KingR. KrivacicS. LaCasceA.S. LimM. MessmerM. NarkhedeM. RabinovitchR. RamakrishnanP. ReidE. RobertsK.B. SaeedH. SmithS.D. SvobodaJ. SwinnenL.J. TuscanoJ. VoseJ.M. DwyerM.A. SundarH. NCCN guidelines® insights: B-cell lymphomas, version 6.2023.J. Natl. Compr. Canc. Netw.202321111118113110.6004/jnccn.2023.0057 37935098
    [Google Scholar]
  4. HertzbergM. R-CHOP in DLBCL: Priming for success.Blood202213981121112210.1182/blood.2021013620 35201332
    [Google Scholar]
  5. SchmitzR. WrightG.W. HuangD.W. JohnsonC.A. PhelanJ.D. WangJ.Q. RoullandS. KasbekarM. YoungR.M. ShafferA.L. HodsonD.J. XiaoW. YuX. YangY. ZhaoH. XuW. LiuX. ZhouB. DuW. ChanW.C. JaffeE.S. GascoyneR.D. ConnorsJ.M. CampoE. Lopez-GuillermoA. RosenwaldA. OttG. DelabieJ. RimszaL.M. Tay Kuang WeiK. ZelenetzA.D. LeonardJ.P. BartlettN.L. TranB. ShettyJ. ZhaoY. SoppetD.R. PittalugaS. WilsonW.H. StaudtL.M. Genetics and pathogenesis of diffuse large B-cell lymphoma.N. Engl. J. Med.2018378151396140710.1056/NEJMoa1801445 29641966
    [Google Scholar]
  6. ChapuyB. StewartC. DunfordA.J. KimJ. KamburovA. ReddR.A. LawrenceM.S. RoemerM.G.M. LiA.J. ZiepertM. StaigerA.M. WalaJ.A. DucarM.D. LeshchinerI. RheinbayE. Taylor-WeinerA. CoughlinC.A. HessJ.M. PedamalluC.S. LivitzD. RosebrockD. RosenbergM. TracyA.A. HornH. van HummelenP. FeldmanA.L. LinkB.K. NovakA.J. CerhanJ.R. HabermannT.M. SiebertR. RosenwaldA. ThornerA.R. MeyersonM.L. GolubT.R. BeroukhimR. WulfG.G. OttG. RodigS.J. MontiS. NeubergD.S. LoefflerM. PfreundschuhM. TrümperL. GetzG. ShippM.A. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.Nat. Med.201824567969010.1038/s41591‑018‑0016‑8 29713087
    [Google Scholar]
  7. SehnL.H. BerryB. ChhanabhaiM. FitzgeraldC. GillK. HoskinsP. KlasaR. SavageK.J. ShenkierT. SutherlandJ. GascoyneR.D. ConnorsJ.M. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP.Blood200710951857186110.1182/blood‑2006‑08‑038257 17105812
    [Google Scholar]
  8. WangL. LiL.R. R-CHOP resistance in diffuse large B-cell lymphoma: Biological and molecular mechanisms.Chin. Med. J.2021134325326010.1097/CM9.0000000000001294 33323828
    [Google Scholar]
  9. HuM. DiC.C. HuQ. Clinical study on jiedu xiaoliu prescription combined with thalidomide in the treatment of elderly or refractory recurrent lymphoma.Chin. J. Tradit. Chin. Med. Inf.202330513514010.19879/j.cnki.1005‑5304.202205259
    [Google Scholar]
  10. HuM. DiC.C. HuQ. A retrospective cohort study on the improvement of progression-free survival in patients with B-cell non-Hodgkin’s lymphoma by detoxification and anti-tumor formula.Modern Chin. Med. Clin.20233013137
    [Google Scholar]
  11. HuQ. LuJ.H. BaoJ.Z. A traditional Chinese medicine composition for the treatment of lymphoma and its preparation method and application.2022
    [Google Scholar]
  12. UesakaK. OkaH. KatoR. KanieK. KojimaT. TsugawaH. TodaY. HorinouchiT. Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives.J. Biosci. Bioeng.2022134536337310.1016/j.jbiosc.2022.08.004 36127250
    [Google Scholar]
  13. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  14. SantosL.H.S. FerreiraR.S. CaffarenaE.R. Integrating molecular docking and molecular dynamics simulations.Methods Mol. Biol.20192053133410.1007/978‑1‑4939‑9752‑7_2 31452096
    [Google Scholar]
  15. AhamadS. KanipakamH. BirlaS. AliM.S. GuptaD. Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies.Eur. J. Pharmacol.202189017366410.1016/j.ejphar.2020.173664 33131721
    [Google Scholar]
  16. AhamadS. AliH. SeccoI. GiaccaM. GuptaD. Anti-fungal drug anidulafungin inhibits SARS-CoV-2 spike-induced syncytia formation by targeting ACE2-spike protein interaction.Front. Genet.20221386647410.3389/fgene.2022.866474 35401674
    [Google Scholar]
  17. AhamadS. IslamA. AhmadF. DwivediN. HassanM.I. 2/3D-QSAR, molecular docking and MD simulation studies of FtsZ protein targeting benzimidazoles derivatives.Comput. Biol. Chem.20197839841310.1016/j.compbiolchem.2018.12.017 30602415
    [Google Scholar]
  18. AhamadS HemaK AhmadS KumarV GuptaD Insights into the structure and dynamics of SARS-CoV-2 spike glycoprotein double mutant L452R-E484Q.3 Biotech.20221248710.1007/s13205‑022‑03151‑0
    [Google Scholar]
  19. AhamadS. KanipakamH. GuptaD. Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding.J. Biomol. Struct. Dyn.202240126327510.1080/07391102.2020.1811774 32851910
    [Google Scholar]
  20. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  21. AlamM. Al-JenoobiF. Al-MohizeaA. AliR. Understanding and managing oral bioavailability: Physiological concepts and patents.Recent Patents Anticancer Drug Discov.2014101879610.2174/1574892809666140917103834 25230073
    [Google Scholar]
  22. JiaC.Y. LiJ.Y. HaoG.F. YangG.F. A drug-likeness toolbox facilitates ADMET study in drug discovery.Drug Discov. Today202025124825810.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  23. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  24. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  25. AmbergerJS. HamoshA. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinformatics20175811210.1002/cpbi.27
    [Google Scholar]
  26. SepulvedaJ.L. Using R and bioconductor in clinical genomics and transcriptomics.J. Mol. Diagn.202022132010.1016/j.jmoldx.2019.08.006 31605800
    [Google Scholar]
  27. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg034 12519996
    [Google Scholar]
  28. MilanoM. ZuccoC. SettinoM. CannataroM. An extensive assessment of network embedding in PPI network alignment.Entropy202224573010.3390/e24050730 35626613
    [Google Scholar]
  29. VellaD. MariniS. VitaliF. Di SilvestreD. MauriG. BellazziR. MTGO: PPI network analysis via topological and functional module identification.Sci. Rep.201881549910.1038/s41598‑018‑23672‑0 29615773
    [Google Scholar]
  30. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  31. LaskowskiR.A. SwindellsM.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  32. MerirantaL. PasanenA. AlkodsiA. HaukkaJ. Karjalainen-LindsbergM.L. LeppäS. Molecular background delineates outcome of double protein expressor diffuse large B-cell lymphoma.Blood Adv.20204153742375310.1182/bloodadvances.2020001727 32780847
    [Google Scholar]
  33. JiangY. MelnickA. The epigenetic basis of diffuse large B-cell lymphoma.Semin. Hematol.2015522869610.1053/j.seminhematol.2015.01.003 25805588
    [Google Scholar]
  34. HewardJ.A. KumarE.A. KorfiK. OkosunJ. FitzgibbonJ. Precision medicine and lymphoma.Curr. Opin. Hematol.201825432933410.1097/MOH.0000000000000437 29738334
    [Google Scholar]
  35. ShahS.B. CarlsonC.R. LaiK. ZhongZ. MarsicoG. LeeK.M. Félix VélezN.E. AbelesE.B. AllamM. HuT. WalterL.D. MartinK.E. GandhiK. ButlerS.D. PuriR. McCleary-WheelerA.L. TamW. ElementoO. TakataK. SteidlC. ScottD.W. FontanL. UenoH. CosgroveB.D. InghiramiG. GarcíaA.J. CoskunA.F. KoffJ.L. MelnickA. SinghA. Combinatorial treatment rescues tumour-microenvironment-mediated attenuation of MALT1 inhibitors in B-cell lymphomas.Nat. Mater.202322451152310.1038/s41563‑023‑01495‑3 36928381
    [Google Scholar]
  36. NotarteK.I. SenanayakeS. MacaranasI. AlbanoP.M. MundoL. FennellE. LeonciniL. MurrayP. MicroRNA and other non-coding RNAs in epstein–barr virus-associated cancers.Cancers20211315390910.3390/cancers13153909 34359809
    [Google Scholar]
  37. HaJ. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint.J. Pers. Med.202212688510.3390/jpm12060885 35743670
    [Google Scholar]
  38. HaJ. ParkS. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans.Comput. Biol. Bioinformat.20232021257126810.1109/TCBB.2022.3191972 35849666
    [Google Scholar]
  39. HaJ. ParkC. ParkC. ParkS. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization.J. Biomed. Inform.202010210335810.1016/j.jbi.2019.103358 31857202
    [Google Scholar]
  40. LuW.C. OmariR. RayH. WangJ. WilliamsI. JacobsC. HockadenN. BochmanM.L. CarpenterR.L. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation.FEBS J.2022289133876389310.1111/febs.16375 35080342
    [Google Scholar]
  41. ShariatiM. Meric-BernstamF. Targeting AKT for cancer therapy.Expert Opin. Investig. Drugs2019281197798810.1080/13543784.2019.1676726 31594388
    [Google Scholar]
  42. QianZ. YeJ. LiJ. CheY. YuW. XuP. LinJ. YeF. XuX. SuZ. LiD. XieZ. WuY. ShenH. Decrotonylation of AKT1 promotes AKT1 phosphorylation and activation during myogenic differentiation.J. Adv. Res.20235011713310.1016/j.jare.2022.10.005 36265762
    [Google Scholar]
  43. PorterA.G. JänickeR.U. Emerging roles of caspase-3 in apoptosis.Cell Death Differ.1999629910410.1038/sj.cdd.4400476 10200555
    [Google Scholar]
  44. BhatA.A. ThapaR. AfzalO. AgrawalN. AlmalkiW.H. KazmiI. AlzareaS.I. AltamimiA.S.A. PrasherP. SinghS.K. DuaK. GuptaG. The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review.Int. J. Biol. Macromol.2023242Pt 212483210.1016/j.ijbiomac.2023.124832 37196719
    [Google Scholar]
  45. FujikawaD. NakamuraT. YoshiokaD. LiZ. MoriizumiH. TaguchiM. Tokai-NishizumiN. Kozuka-HataH. OyamaM. TakekawaM. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases.Curr. Biol.2023331019671981.e810.1016/j.cub.2023.04.012 37119817
    [Google Scholar]
  46. EskandariE. EavesC.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis.J. Cell Biol.20222216e20220115910.1083/jcb.202201159 35551578
    [Google Scholar]
  47. CrowleyL.C. WaterhouseN.J. Detecting cleaved caspase-3 in apoptotic cells by flow cytometry.Cold Spring Harb. Protoc.2016201611pdb.prot08731210.1101/pdb.prot087312 27803251
    [Google Scholar]
  48. BlachlyJ.S. BaiocchiR.A. Targeting PI 3‐kinase (PI 3 K), AKT and m TOR axis in lymphoma.Br. J. Haematol.20141671193210.1111/bjh.13065 25100567
    [Google Scholar]
  49. TewariD. PatniP. BishayeeA. SahA.N. BishayeeA. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy.Semin. Cancer Biol.20228011710.1016/j.semcancer.2019.12.008 31866476
    [Google Scholar]
  50. MiaoJ. ChenG. ChunS.Y. ChakE. LaiP. Bid sensitizes apoptosis induced by chemotherapeutic drugs in hepatocellular carcinoma.Int. J. Oncol.200425365165910.3892/ijo.25.3.651 15289866
    [Google Scholar]
  51. DengY. WangF. HughesT. YuJ. FOXOs in cancer immunity: Knowns and unknowns.Semin. Cancer Biol.201850536410.1016/j.semcancer.2018.01.005 29309928
    [Google Scholar]
  52. NandaS.S. HossainM.I. JuH. PapaefthymiouG.C. YiD.K. GSK-3 inhibitors in the regulation and control of colon carcinoma.Curr. Drug Targets202122131485149510.2174/1389450122666210204203950 33563193
    [Google Scholar]
  53. RevathideviS. MunirajanA.K. Akt in cancer: Mediator and more.Semin. Cancer Biol.201959809110.1016/j.semcancer.2019.06.002 31173856
    [Google Scholar]
  54. ShimuraT. Targeting the AKT/cyclin D1 pathway to overcome intrinsic and acquired radioresistance of tumors for effective radiotherapy.Int. J. Radiat. Biol.201793438138510.1080/09553002.2016.1257832 27910734
    [Google Scholar]
  55. XieY. LeiX. ZhaoG. GuoR. CuiN. mTOR in programmed cell death and its therapeutic implications.Cytokine Growth Factor Rev.202371-72668110.1016/j.cytogfr.2023.06.002 37380596
    [Google Scholar]
  56. FuW. WuG. Targeting mTOR for anti-aging and anti-cancer therapy.Molecules2023287315710.3390/molecules28073157 37049920
    [Google Scholar]
  57. ReddyD. KumavathR. GhoshP. BarhD. Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways.Biomolecules201991279210.3390/biom9120792 31783627
    [Google Scholar]
  58. ZhangM. LiuY. YinY. SunZ. WangY. ZhangZ. LiF. ChenX. UBE2S promotes the development of ovarian cancer by promoting PI3K/AKT/mTOR signaling pathway to regulate cell cycle and apoptosis.Mol. Med.20222816210.1186/s10020‑022‑00489‑2 35658829
    [Google Scholar]
  59. JiangL. WangP. SunY.J. WuY.J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway.J. Exp. Clin. Cancer Res.201938126510.1186/s13046‑019‑1251‑7 31215501
    [Google Scholar]
  60. TianY. ChenZ.H. WuP. ZhangD. MaY. LiuX.F. WangX. DingD. CaoX.C. YuY. mir497hg‐derived miR‐195 and miR‐497 mediate tamoxifen resistance via PI3K/AKT signaling in breast cancer.Adv. Sci.20231012220481910.1002/advs.202204819 36815359
    [Google Scholar]
  61. MoazamiyanfarR. RezaeiS. Nobiletin in cancer therapy; Mechanisms and therapy perspectives.CPD202329221713172810.2174/1381612829666230426115424
    [Google Scholar]
  62. HuangJ. ChangZ. LuQ. ChenX. NajafiM. Nobiletin as an inducer of programmed cell death in cancer: A review.Apoptosis2022275-629731010.1007/s10495‑022‑01721‑4 35312885
    [Google Scholar]
  63. ChenY.Y. LiangJ.J. WangD.L. ChenJ.B. CaoJ.P. WangY. SunC.D. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review.Crit. Rev. Food Sci. Nutr.202363236309632910.1080/10408398.2022.2030297 35089821
    [Google Scholar]
  64. YouL. LinJ. YuZ. QianY. BiY. WangF. ZhangL. ZhengC. ZhangJ. LiW. CaiY. GaoY. KongX. SunX. Nobiletin suppresses cholangiocarcinoma proliferation via inhibiting GSK3β.Int. J. Biol. Sci.202218155698571210.7150/ijbs.78345 36263164
    [Google Scholar]
  65. AshrafizadehM. ZarrabiA. SaberifarS. HashemiF. HushmandiK. HashemiF. MoghadamE.R. MohammadinejadR. NajafiM. GargM. Nobiletin in cancer therapy: How this plant derived-natural compound targets various oncogene and onco-suppressor pathways.Biomedicines20208511010.3390/biomedicines8050110 32380783
    [Google Scholar]
  66. GohJ.X.H. TanL.T. GohJ.K. ChanK.G. PusparajahP. LeeL.H. GohB.H. Nobiletin and derivatives: Functional compounds from citrus fruit peel for colon cancer chemoprevention.Cancers201911686710.3390/cancers11060867 31234411
    [Google Scholar]
  67. NakajimaA. OhizumiY. Potential benefits of nobiletin, a citrus flavonoid, against alzheimer’s disease and parkinson’s disease.Int. J. Mol. Sci.20192014338010.3390/ijms20143380 31295812
    [Google Scholar]
  68. WuY. ChengC. LiQ. ChenJ. LvL. XuJ. ZhangK. ZhengL. The application of citrus folium in breast cancer and the mechanism of its main component nobiletin: A systematic review.Evid. Based Complement. Alternat. Med.2021202111510.1155/2021/2847466 34257674
    [Google Scholar]
  69. WuY. LiQ. LvL. ChenJ. YingH. RuanM. ZhuW. XuJ. ZhangC. ZhangK. GuoY. ZhuW. ZhengL. Nobiletin inhibits breast cancer cell migration and invasion by suppressing the IL-6-induced ERK-STAT and JNK-c-JUN pathways.Phytomedicine202311015461010.1016/j.phymed.2022.154610 36584607
    [Google Scholar]
  70. WuX. SongM. QiuP. RakariyathamK. LiF. GaoZ. CaiX. WangM. XuF. ZhengJ. XiaoH. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis.Carcinogenesis201738445546410.1093/carcin/bgx018 28207072
    [Google Scholar]
  71. ChenM. ZhangR. ChenY. ChenX. LiY. ShenJ. YuanM. ChenY. WuJ. SunQ. Nobiletin inhibits de novo FA synthesis to alleviate gastric cancer progression by regulating endoplasmic reticulum stress.Phytomedicine202311615490210.1016/j.phymed.2023.154902 37270969
    [Google Scholar]
  72. ChenM. LiH. ZhengS. ShenJ. ChenY. LiY. YuanM. WuJ. SunQ. Nobiletin targets SREBP1/ACLY to induce autophagy-dependent cell death of gastric cancer cells through PI3K/Akt/mTOR signaling pathway.Phytomedicine202412815536010.1016/j.phymed.2024.155360 38547624
    [Google Scholar]
  73. MaX. JinS. ZhangY. WanL. ZhaoY. ZhouL. Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo.Phytother. Res.201428456056710.1002/ptr.5024 23818450
    [Google Scholar]
  74. GoanY.G. WuW.T. LiuC.I. NeohC.A. WuY.J. Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells.Molecules20192416288110.3390/molecules24162881 31398899
    [Google Scholar]
  75. VaraJ.Á.F. CasadoE. de CastroJ. CejasP. Belda-IniestaC. González-BarónM. PI3K/Akt signalling pathway and cancer.Cancer Treat. Rev.200430219320410.1016/j.ctrv.2003.07.007 15023437
    [Google Scholar]
  76. ZhangX. LiuY. Targeting the PI3K/AKT/mTOR signaling pathway in primary central nervous system lymphoma: Current status and future prospects.CNS Neurol. Disord. Drug Targets202019316517310.2174/1871527319666200517112252 32416683
    [Google Scholar]
  77. ShiM.D. LiaoY.C. ShihY.W. TsaiL.Y. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells.Phytomedicine2013208-974375210.1016/j.phymed.2013.02.004 23537747
    [Google Scholar]
  78. BojarczukK. WienandK. RyanJ.A. ChenL. Villalobos-OrtizM. MandatoE. StachuraJ. LetaiA. LawtonL.N. ChapuyB. ShippM.A. Targeted inhibition of PI3Kα/δ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL.Blood20191331708010.1182/blood‑2018‑08‑872465 30322870
    [Google Scholar]
  79. ZhangR. ChenJ. MaoL. GuoY. HaoY. DengY. HanX. LiQ. LiaoW. YuanM. Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating autophagy in ovarian cancer cells.J. Agric. Food Chem.20206851326133610.1021/acs.jafc.9b07908 31955565
    [Google Scholar]
  80. HanS.H. HanJ.H. ChunW.J. LeeS.S. KimH.S. LeeJ.W. Nobiletin inhibits non-small-cell lung cancer by inactivating wnt/β-catenin signaling through downregulating mir-15-5p.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/7782963 35003309
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073290877240604102022
Loading
/content/journals/cchts/10.2174/0113862073290877240604102022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test