Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Amphetamines, as psychoactive drugs, are extensively abused in society and cause serious mental and physical disorders among young people. Furthermore, the extremely euphoric and excited sense of stimulant consumption leads to dramatic social problems. Determination of various analytes and related metabolites in the complex biological matrices at trace levels has made sample preparation an indispensable part of forensic sciences. According to the problems above, providing high sensitivity, solving some analytical problems like matrix effects in LC-MS-MS, and needing a cleaner extract are remarkable aspects of novel sample preparation methods in drug analysis. Application of nanotechnology and carbon-based nanocomposites seems to bring the above properties in developed and novel sample preparation methods. This review will try to provide an overview of different carbonic nano adsorbents used in sample preparation methods of amphetamines and discuss their superiority over the other nanomaterials.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073279265231222060539
2025-05-01
2025-10-04
Loading full text...

Full text loading...

References

  1. KhalilianF. RezaeeM. Mixed-hemimicelle solid phase extraction followed by dispersive liquid-liquid microextraction of amphetamines from biological samples.J. Braz. Chem. Soc.201627112105211310.5935/0103‑5053.20160101
    [Google Scholar]
  2. Ahmadi-JouibariT. FattahiN. ShamsipurM. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid–liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.J. Pharm. Biomed. Anal.20149414515110.1016/j.jpba.2014.01.04424583909
    [Google Scholar]
  3. XiongJ. ChenJ. HeM. HuB. Simultaneous quantification of amphetamines, caffeine and ketamine in urine by hollow fiber liquid phase microextraction combined with gas chromatography-flame ionization detector.Talanta201082396997510.1016/j.talanta.2010.06.00120678654
    [Google Scholar]
  4. ZengJ. ChenJ. LiM. SubhanF. ChongF. WenC. YuJ. CuiB. ChenX. Determination of amphetamines in biological samples using electro enhanced solid-phase microextraction-gas chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2015100016917510.1016/j.jchromb.2015.07.01626245360
    [Google Scholar]
  5. BrownS.D. MeltonT.C. Trends in bioanalytical methods for the determination and quantification of club drugs: 2000–2010.Biomed. Chromatogr.2011251-230032110.1002/bmc.154921061455
    [Google Scholar]
  6. PetersF.T. SchaeferS. StaackR.F. KraemerT. MaurerH.H. Screening for and validated quantification of amphetamines and of amphetamine‐ and piperazine‐derived designer drugs in human blood plasma by gas chromatography/mass spectrometry.J. Mass Spectrom.200338665967610.1002/jms.48312827635
    [Google Scholar]
  7. NadarS.S. KelkarR.K. PiseP.V. PatilN.P. PatilS.P. Chaubal-DurveN.S. BhangeV.P. TiwariM.S. PatilP.D. The untapped potential of magnetic nanoparticles for forensic investigations: A comprehensive review.Talanta202123012229710.1016/j.talanta.2021.12229733934767
    [Google Scholar]
  8. ArmentaS. GarriguesS. de la GuardiaM. The role of green extraction techniques in green analytical chemistry.Trends Analyt. Chem.2015712810.1016/j.trac.2014.12.011
    [Google Scholar]
  9. JaliliV. BarkhordariA. GhiasvandA. New extraction media in microextraction techniques: A review of reviews.Microchem. J.202015310438610.1016/j.microc.2019.104386
    [Google Scholar]
  10. HeY. Concheiro-GuisanM. Microextraction sample preparation techniques in forensic analytical toxicology.Biomed. Chromatogr.2019331e444410.1002/bmc.444430468511
    [Google Scholar]
  11. XieL. JiangR. ZhuF. LiuH. OuyangG. Application of functionalized magnetic nanoparticles in sample preparation.Anal. Bioanal. Chem.2014406237739910.1007/s00216‑013‑7302‑624037613
    [Google Scholar]
  12. MurtadaK. de AndrésF. ZougaghM. RíosÁ. Strategies for antidepressants extraction from biological specimens using nanomaterials for analytical purposes: A review.Microchem. J.201915010419310.1016/j.microc.2019.104193
    [Google Scholar]
  13. LuA.H. SalabasE.L. SchüthF. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed.20074681222124410.1002/anie.20060286617278160
    [Google Scholar]
  14. AhsanM.A. IslamM.T. HernandezC. CastroE. KatlaS.K. KimH. LinY. CurryM.L. Gardea-TorresdeyJ. NoveronJ.C. Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of tetracycline, sulfamethoxazole and bisphenol a from water.J. Environ. Chem. Eng.2018644329433810.1016/j.jece.2018.06.040
    [Google Scholar]
  15. AshiqA. VithanageM. SarkarB. KumarM. BhatnagarA. KhanE. XiY. OkY.S. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review.Environ. Res.202119711109110.1016/j.envres.2021.11109133794177
    [Google Scholar]
  16. LuoY.B. YuanB.F. YuQ.W. FengY.Q. Substrateless graphene fiber: A sorbent for solid-phase microextraction.J. Chromatogr. A2012126891510.1016/j.chroma.2012.10.03523131764
    [Google Scholar]
  17. Alaei ShahmirzadiM.A. HosseiniS.S. LuoJ. OrtizI. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.J. Environ. Manage.201821532434410.1016/j.jenvman.2018.03.04029579726
    [Google Scholar]
  18. XiaoN.L. ZhaoJ.H. LiuB. WangH.D. ZhangM. LiQ. LiP-Y. HuG-W. LaiH-J. Preparation of chemically modified cellulose filter paper for extracting amphetamine-type stimulants from water followed by HPLC-MS/MS determination.Ind. Crops Prod.202319511639710.1016/j.indcrop.2023.116397
    [Google Scholar]
  19. TaghvimiA. DastmalchiS. JavadzadehY. Application of carbonic nanosheets based on urea precursors as dispersive solid phase extraction adsorbent for extraction of methamphetamine from urine samples.Adv. Pharm. Bull.202011462463110.34172/apb.2021.07134888209
    [Google Scholar]
  20. LuQ. GuoH. ZhangY. TangX. LeiW. QiR. ChuJ. LiD. ZhaoQ. Graphene oxide-Fe3O4 nanocomposite magnetic solid phase extraction followed by UHPLC-MS/MS for highly sensitive determination of eight psychoactive drugs in urine samples.Talanta202020612021210.1016/j.talanta.2019.12021231514841
    [Google Scholar]
  21. JabbariN.R. TaghvimiA. DastmalchiS. JavadzadehY. Dispersive solid‐phase extraction adsorbent of methamphetamine using in‐situ synthesized carbon‐based conductive polypyrrole nanocomposite: focus on clinical applications in human urine.J. Sep. Sci.202043360661310.1002/jssc.20190077331663275
    [Google Scholar]
  22. GhalebiM. HamidiS. NematiM. SheykizadehS. LotfipourF. AlipourG.N. Development of an efficient and sensitive magnetic dispersive solid-phase extraction technique for preconcentration of amphetamine and methamphetamine determined by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry in sports supplements.Anal. Bioanal. Chem.202294431442
    [Google Scholar]
  23. OrangeS.J. TaghvimiA. DastmalchiS. JavadzadehY. Silica-functionalized nano-graphene oxide composite as potent-dispersive solid-phase extraction adsorbent of methylphenidate from urine samples.Arab. J. Sci. Eng.20204564697470410.1007/s13369‑020‑04423‑8
    [Google Scholar]
  24. VijayalakshmiV. SadanandanB. VenkataramanaiahR.A. Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18.Results Chem.2022410048410.1016/j.rechem.2022.100484
    [Google Scholar]
  25. VijayalakshmiV. SadanandanB. AnjanapuraR.V. In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells.J. Biochem. Mol. Toxicol.2023373e2328310.1002/jbt.2328336541368
    [Google Scholar]
  26. TaghvimiA. TabriziA.B. DastmalchiS. JavadzadehY. Metal organic framework based carbon porous as an efficient dispersive solid phase extraction adsorbent for analysis of methamphetamine from urine matrix.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2019110914915410.1016/j.jchromb.2019.02.00530769162
    [Google Scholar]
  27. ChenC. HuJ. ShaoD. LiJ. WangX. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II).J. Hazard. Mater.20091642-392392810.1016/j.jhazmat.2008.08.08918842337
    [Google Scholar]
  28. Performance comparison between single wall carbon nanotube bundle and multiwall carbon nanotube for global interconnects. Majumder, M.K.; Kaushik, B.; Manhas, S., Eds.;2011 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC)22-24 April 2011 Udaipur, India201110.1109/ETNCC.2011.5958496
    [Google Scholar]
  29. BeitollahiH. RaoofJ.B. HosseinzadehR. Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode.Anal. Sci.2011271099199710.2116/analsci.27.99121985923
    [Google Scholar]
  30. LiuG. RiechersS.L. MellenM.C. LinY. Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrode.Electrochem. Commun.20057111163116910.1016/j.elecom.2005.08.025
    [Google Scholar]
  31. Gomes-FilhoS.L.R. DiasA.C.M.S. SilvaM.M.S. SilvaB.V.M. DutraR.F. A carbon nanotube-based electrochemical immunosensor for cardiac troponin T.Microchem. J.2013109101510.1016/j.microc.2012.05.033
    [Google Scholar]
  32. Pérez-LópezB. MerkoçiA. Carbon nanotubes and graphene in analytical sciences.Mikrochim. Acta20121791-211610.1007/s00604‑012‑0871‑9
    [Google Scholar]
  33. AbbasianM. Balali-MoodM. Salar AmoliH. MasoumiA. A new solid-phase microextraction fiber for separation and determination of methamphetamines in human urine using sol–gel technique.J. Sol-Gel Sci. Technol.201781124726010.1007/s10971‑016‑4050‑z
    [Google Scholar]
  34. KhajeamiriA.R. KobarfardF. BayandoriM.A. Application of polyaniline and polyaniline/multiwalled carbon nanotubes‐coated fibers for analysis of ecstasy.Chem. Eng. Technol.20123581515151910.1002/ceat.201000509
    [Google Scholar]
  35. Argente-GarcíaA. Moliner-MartínezY. López-GarcíaE. Campíns-FalcóP. Herráez-HernándezR. Application of carbon nanotubes modified coatings for the determination of amphetamines by in-tube solid-phase microextraction and capillary liquid chromatography.Separations201631710.3390/chromatography3010007
    [Google Scholar]
  36. SongA. WangJ. LuG. JiaZ. YangJ. ShiE. Oxidized multiwalled carbon nanotubes coated fibers for headspace solid-phase microextraction of amphetamine-type stimulants in human urine.Forensic Sci. Int.2018290495510.1016/j.forsciint.2018.06.03130015279
    [Google Scholar]
  37. NarimaniO. DalaliN. RostamizadehK. Functionalized carbon nanotube/ionic liquid-coated wire as a new fiber assembly for determination of methamphetamine and ephedrine by gas chromatography-mass spectrometry.Anal. Methods20146218645865310.1039/C4AY01394H
    [Google Scholar]
  38. KassaeeM.Z. MotamediE. MajdiM. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite.Chem. Eng. J.2011172154054910.1016/j.cej.2011.05.093
    [Google Scholar]
  39. FeistB. SitkoR. Fast and sensitive determination of heavy metal ions as batophenanthroline chelates in food and water samples after dispersive micro-solid phase extraction using graphene oxide as sorbent.Microchem. J.2019147303610.1016/j.microc.2019.03.013
    [Google Scholar]
  40. HartonoT. WangS. MaQ. ZhuZ. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.J. Colloid Interface Sci.2009333111411910.1016/j.jcis.2009.02.00519233379
    [Google Scholar]
  41. TaghvimiA. HamishehkarH. EbrahimiM. The application of magnetic nano graphene oxide in determination of methamphetamine by high performance liquid chromatography of urine samples.J. Indian Chem. Soc.201613814711480
    [Google Scholar]
  42. ZengS. GanN. Weideman-MeraR. CaoY. LiT. SangW. Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide.Chem. Eng. J.201321810811510.1016/j.cej.2012.12.030
    [Google Scholar]
  43. ZhaoG. SongS. WangC. WuQ. WangZ. Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent.Anal. Chim. Acta20117081-215515910.1016/j.aca.2011.10.00622093359
    [Google Scholar]
  44. ZengF. SunZ. SangX. DiamondD. LauK.T. LiuX. SuD.S. In Situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors.ChemSusChem20114111587159110.1002/cssc.20110031921953723
    [Google Scholar]
  45. HeQ. LiuJ. LiuX. LiG. DengP. LiangJ. Manganese dioxide Nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of Amaranth.Colloids Surf. B Biointerfaces201817256557210.1016/j.colsurfb.2018.09.00530218982
    [Google Scholar]
  46. TaghvimiA. HamishehkarH. EbrahimiM. Magnetic nano graphene oxide as solid phase extraction adsorbent coupled with liquid chromatography to determine pseudoephedrine in urine samples.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20161009-1010667210.1016/j.jchromb.2015.12.00526708626
    [Google Scholar]
  47. LiuF. ZhangL. WangL. ZhaoB. WuW. Graphene oxide for electronics.Oxide ElectronicsWiley2021119
    [Google Scholar]
  48. HamidiS. Simultaneous and sensitive determination of amphetamine, codeine and morphine in exhaled breath condensate, using capillary electrophoresis coupled with on-line and off-line enhancing methods.Curr. Pharm. Anal.202016787287910.2174/1573412915666190219143049
    [Google Scholar]
  49. CaoS. TangT. XiC. ChenZ. Fabricating magnetic GO/ZIF-8 nanocomposite for amphetamine adsorption from water: Capability and mechanism.Chem. Eng. J.202142213009610.1016/j.cej.2021.130096
    [Google Scholar]
  50. ShiJ.W. ZhouJ.F. HeX. ZhangY. Rapid analysis of four amphetamines in urine by self-made pipette-tip solid-phase extraction followed by GC-MS/MS.J. Chromatogr. Sci.202058656957510.1093/chromsci/bmaa01832390045
    [Google Scholar]
  51. TaghvimiA. HamishehkarH. Developed nano carbon-based coating for simultaneous extraction of potent central nervous system stimulants from urine media by stir bar sorptive extraction method coupled to high performance liquid chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2019112512170110.1016/j.jchromb.2019.06.02831310949
    [Google Scholar]
  52. TaghvimiA. HamidiS. NematiM. Magnetic dispersive solid phase microextraction technique coupled with LC–MS/MS for evaluating content versus label claims in ephedrine-free food supplements.J. Verbraucherschutz Lebensmsicherh.201914327528210.1007/s00003‑018‑1203‑8
    [Google Scholar]
  53. RezazadehM. YaminiY. SeidiS. Application of a new nanocarbonaceous sorbent in electromembrane surrounded solid phase microextraction for analysis of amphetamine and methamphetamine in human urine and whole blood.J. Chromatogr. A201513961610.1016/j.chroma.2015.03.07725907668
    [Google Scholar]
  54. DjozanD. BaheriT. Investigation of pencil leads fiber efficiency for SPME of trace amount of methamphetamine from human saliva prior to GC-MS analysis.J. Chromatogr. Sci.201048322422810.1093/chromsci/48.3.22420223090
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073279265231222060539
Loading
/content/journals/cchts/10.2174/0113862073279265231222060539
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test