Skip to content
2000
Volume 28, Issue 7
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Measuring clinically relevant biomarkers is critical for disease screening, diagnosis, and therapeutic monitoring. However, analyzing trace biomarkers in complex biological fluids remains challenging. Magnetic solid phase extraction (MSPE) has recently emerged as a promising sample preparation approach due to its simplicity, efficiency, and ability to selectively isolate biomarkers. Databases, including PubMed, Web of Science, and Scopus, were systematically searched for studies on MSPE for clinical biomarkers. Key findings on nanomaterial synthesis strategies, surface modifications, and applications in biomarker isolation were synthesized. Recent research demonstrates magnetic nanoparticles with tailored surface chemistry can selectively extract biomarkers like cancer antigens, neurotransmitters, and pharmaceuticals from matrices such as plasma, urine, and serum. MSPE enables clinically relevant limits of detection, high recovery, and purification in a rapid and simple workflow. This technique shows significant potential to improve clinical diagnostics. Further research on novel magnetic materials and surface functionalization is warranted. This review provides insights for researchers aiming to develop MSPE methods for sensitive and selective analysis of clinical biomarkers.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073278749231220074740
2024-01-25
2025-10-04
Loading full text...

Full text loading...

References

  1. HamidiS. TaghvimiA. MazouchiN. Micro solid phase extraction using novel adsorbents.Crit. Rev. Anal. Chem.202151210311410.1080/10408347.2019.168423531696736
    [Google Scholar]
  2. HamidiS. Recent advances in solid-phase extraction as a platform for sample preparation in biomarker assay.Crit. Rev. Anal. Chem.202153119921035192409
    [Google Scholar]
  3. HamidiS. Alipour-GhorbaniN. HamidiA. Solid phase microextraction techniques in determination of biomarkers.Crit. Rev. Anal. Chem.201848423925110.1080/10408347.2017.139688529337594
    [Google Scholar]
  4. MittalA. RoyI. GandhiS. Magnetic nanoparticles: An overview for biomedical applications.Magnetochemistry20228910710.3390/magnetochemistry8090107
    [Google Scholar]
  5. GandhiS. RoyI. Methylene blue loaded, silica coated cobalt ferrite nanoparticles with potential for combination therapy.Mater. Res. Express20196707400510.1088/2053‑1591/ab187a
    [Google Scholar]
  6. GandhiS. IssarS. MahapatroA.K. RoyI. Cobalt ferrite nanoparticles for bimodal hyperthermia and their mechanistic interactions with lysozyme.J. Mol. Liq.202031011319410.1016/j.molliq.2020.113194
    [Google Scholar]
  7. GandhiS. RoyI. Synthesis and characterization of manganese ferrite nanoparticles, and its interaction with bovine serum albumin: A spectroscopic and molecular docking approach.J. Mol. Liq.201929611187110.1016/j.molliq.2019.111871
    [Google Scholar]
  8. MasudM.K. UmerM. HossainM.S.A. YamauchiY. NguyenN.T. ShiddikyM.J.A. Nanoarchitecture frameworks for electrochemical miRNA detection.Trends Biochem. Sci.201944543345210.1016/j.tibs.2018.11.01230686572
    [Google Scholar]
  9. ZhangQ. ZhaoX. WeiH-X. LiJ-H. LuoJ. Silica‐coated nano‐Fe 3 O 4 ‐supported iminopyridine palladium complex as an active, phosphine‐free and magnetically separable catalyst for Heck reactions.Appl. Organomet. Chem.2017315e360810.1002/aoc.3608
    [Google Scholar]
  10. LuA.H. SalabasE.L. SchüthF. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed.20074681222124410.1002/anie.20060286617278160
    [Google Scholar]
  11. TartajP. MoralesM.P. González-CarreñoT. Veintemillas-VerdaguerS. SernaC.J. Advances in magnetic nanoparticles for biotechnology applications.J. Magn. Magn. Mater.2005290-291283410.1016/j.jmmm.2004.11.155
    [Google Scholar]
  12. HanQ. WangZ. XiaJ. ChenS. ZhangX. DingM. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.Talanta201210138839510.1016/j.talanta.2012.09.04623158339
    [Google Scholar]
  13. WieruckaM. BiziukM. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples.Trends Analyt. Chem.201459505810.1016/j.trac.2014.04.007
    [Google Scholar]
  14. SoleimaniM. AhmadiM. MadrakianT. AfkhamiA. Magnetic solid phase extraction of rizatriptan in human urine samples prior to its spectrofluorimetric determination.Sens. Actuators B Chem.20182541225123310.1016/j.snb.2017.07.178
    [Google Scholar]
  15. WuJ. XiaoD. ZhaoH. HeH. PengJ. WangC. ZhangC. HeJ. A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples.Mikrochim. Acta201518213-142299230610.1007/s00604‑015‑1575‑8
    [Google Scholar]
  16. XiS. ZhangK. XiaoD. HeH. Computational-aided design of magnetic ultra-thin dummy molecularly imprinted polymer for selective extraction and determination of morphine from urine by high-performance liquid chromatography.J. Chromatogr. A201614731910.1016/j.chroma.2016.09.07428029366
    [Google Scholar]
  17. WuK. GuoL. XuW. XuH. AguilarZ.P. XuG. LaiW. XiongY. WanY. Sulfonated polystyrene magnetic nanobeads coupled with immunochromatographic strip for clenbuterol determination in pork muscle.Talanta201412943143710.1016/j.talanta.2014.06.00725127616
    [Google Scholar]
  18. TolessaT. ZhouX.X. AmdeM. LiuJ.F. Development of reusable magnetic chitosan microspheres adsorbent for selective extraction of trace level silver nanoparticles in environmental waters prior to ICP-MS analysis.Talanta2017169919710.1016/j.talanta.2017.03.06428411828
    [Google Scholar]
  19. WangT. ZhaoP. LuN. ChenH. ZhangC. HouX. Facile fabrication of Fe 3 O 4 /MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution.Chem. Eng. J.201629540341310.1016/j.cej.2016.03.016
    [Google Scholar]
  20. MusaM. Wan IbrahimW.A. Mohd MarsinF. Abdul KeyonA.S. Rashidi NodehH. Graphene-magnetite as adsorbent for magnetic solid phase extraction of 4-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid in stingless bee honey.Food Chem.201826516517210.1016/j.foodchem.2018.04.02029884368
    [Google Scholar]
  21. LiuY. LiH. LinJ. Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography–mass spectrometry.Talanta20097731037104210.1016/j.talanta.2008.08.01319064088
    [Google Scholar]
  22. SongD. GuY. LiangL. AiZ. ZhangL. XuH. Magnetic solid-phase extraction followed by high performance liquid chromatography for determination of hexanal and heptanal in human urine.Anal. Methods2011361418142310.1039/c1ay05102d
    [Google Scholar]
  23. LeeH. Mussel-inspired surface chemistry for multifunctional coatings.Science2007318584942643010.1126/science.1147241
    [Google Scholar]
  24. SaengerW. JacobJ. GesslerK. SteinerT. HoffmannD. SanbeH. KoizumiK. SmithS.M. TakahaT. Structures of the common cyclodextrins and their larger analogues beyond the doughnut.Chem. Rev.19989851787180210.1021/cr970018111848949
    [Google Scholar]
  25. LogueB.A. KirschtenN.P. PetrikovicsI. MoserM.A. RockwoodG.A. BaskinS.I. Determination of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid in urine and plasma by gas chromatography–mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2005819223724410.1016/j.jchromb.2005.01.04515833287
    [Google Scholar]
  26. NianQ. WangX. WangM. ZuoG. A hybrid material composed of graphitic carbon nitride and magnetite (Fe3O4) for magnetic solid-phase extraction of trace levels of hydroxylated polycyclic aromatic hydrocarbons.Mikrochim. Acta2019186849710.1007/s00604‑019‑3607‑231270618
    [Google Scholar]
  27. OmidiF. Application of a new sample preparation method based on surfactant-assisted dispersive micro solid phase extraction coupled with ultrasonic power for easy and fast simultaneous preconcentration of toluene and xylene biomarkers from human urine samples.J. Indian Chem. Soc.201916611311138
    [Google Scholar]
  28. SamsC. Urinary naphthol as a biomarker of exposure: Results from an oral exposure to carbaryl and workers occupationally exposed to naphthalene.Toxics201751310.3390/toxics501000329051435
    [Google Scholar]
  29. ZhaoQ. LiG.L. NingY.F. ZhouT. MeiY. GuoZ-Z. FengY-Q. Rapid magnetic solid-phase extraction based on magnetic graphitized carbon black for the determination of 1-naphthol and 2-naphthol in urine.Microchem. J.2019147677410.1016/j.microc.2019.03.009
    [Google Scholar]
  30. WangX. SunJ. ZhaoX.E. XuY. SunL. ZhuS. YouJ. WangX. Stable isotope labeling derivatization coupled with magnetic dispersive solid phase extraction for the determination of hydroxyl-containing cholesterol and metabolites by in vivo microdialysis and ultra-high performance liquid chromatography tandem mass spectrometry.J. Chromatogr. A20191594233310.1016/j.chroma.2019.02.02130797576
    [Google Scholar]
  31. CaiY. ZhangY. YuanW. YaoJ. YanG. LuH. A thiazolidine formation-based approach for ultrafast and highly efficient solid-phase extraction of N-Glycoproteome.Anal. Chim. Acta2020110017418110.1016/j.aca.2019.12.00131987138
    [Google Scholar]
  32. HeX. CaoH. LiX. LiY. YuY. MG@PD@TiO2 nanocomposite based magnetic solid phase extraction coupled with LC–MS/MS for determination of lysophosphatidylcholines biomarkers of plasma in psoriasis patients.J. Pharm. Biomed. Anal.202120111410110.1016/j.jpba.2021.11410133984829
    [Google Scholar]
  33. GrauJ. BenedéJ.L. ChisvertA. SalvadorA. Modified magnetic-based solvent-assisted dispersive solid-phase extraction: application to the determination of cortisol and cortisone in human saliva.J. Chromatogr. A2021165246236110.1016/j.chroma.2021.46236134261023
    [Google Scholar]
  34. WuD. XuF. SunB. FuR. HeH. MatyjaszewskiK. Design and preparation of porous polymers.Chem. Rev.201211273959401510.1021/cr200440z22594539
    [Google Scholar]
  35. JiangJ.-X. CooperA.I. Microporous organic polymers: Design, synthesis, and function.Top Curr Chem.200929313310.1007/128_2009_5
    [Google Scholar]
  36. BuddP.M. ButlerA. SelbieJ. MahmoodK. McKeownN.B. GhanemB. MsayibK. BookD. WaltonA. The potential of organic polymer-based hydrogen storage materials.Phys. Chem. Chem. Phys.20079151802180810.1039/b618053a17415491
    [Google Scholar]
  37. ZhangW. AguilaB. MaS. Retraction: Potential applications of functional porous organic polymer materials.J. Mater. Chem. A Mater. Energy Sustain.2017535188961889610.1039/C7TA90189E
    [Google Scholar]
  38. HeJ. XuF. ChenZ. HouX. LiuQ. LongZ. AuNPs/COFs as a new type of SERS substrate for sensitive recognition of polyaromatic hydrocarbons.Chem. Commun.20175380110441104710.1039/C7CC06440C28944796
    [Google Scholar]
  39. LiS. ZhangY. MuS. MaM. LiuX. ZhangH. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC.Mikrochim. Acta2020187738810.1007/s00604‑020‑04362‑z32542460
    [Google Scholar]
  40. HuJ. ZhuS. ChenS.E. LiuR. SunJ. ZhaoX.E. LiuH. Multiplexed derivatization strategy-based dummy molecularly imprinted polymers as sorbents for magnetic dispersive solid phase extraction of globotriaosylsphingosine prior to UHPLC-MS/MS quantitation.Mikrochim. Acta2020187737310.1007/s00604‑020‑04341‑432504133
    [Google Scholar]
  41. WangL. BaoJ. WangL. ZhangF. LiY. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres.Chemistry200612246341634710.1002/chem.20050133416741906
    [Google Scholar]
  42. ZhouH. Introduction to metal-organic frameworks.Chem. Rev.201211267310.1021/cr300014x22280456
    [Google Scholar]
  43. RahimpoorR. Sensitive determination of urinary muconic acid using magnetic dispersive-solid-phase extraction by magnetic amino-functionalised UiO-66.Int. J. Environ. Anal. Chem.20201024885898
    [Google Scholar]
  44. WangY. YanM. JiQ. WangM. WangQ. WangX. HaoY. Fast magnetic solid-phase extraction using an Fe3O4-NH2 @MOF material for monohydroxy polycyclic aromatic hydrocarbons in urine of coke-oven workers.Anal. Methods202012222872288010.1039/D0AY00449A32930211
    [Google Scholar]
  45. FilippouO. DeliyanniE.A. SamanidouV.F. Fabrication and evaluation of magnetic activated carbon as adsorbent for ultrasonic assisted magnetic solid phase dispersive extraction of bisphenol A from milk prior to high performance liquid chromatographic analysis with ultraviolet detection.J. Chromatogr. A20171479203110.1016/j.chroma.2016.12.00227939021
    [Google Scholar]
  46. KabiriS. TranD.N.H. AzariS. LosicD. Graphene-diatom silica aerogels for efficient removal of mercury ions from water.ACS Appl. Mater. Interfaces2015722118151182310.1021/acsami.5b0115925835089
    [Google Scholar]
  47. McKitterickN. BraathenF. Switnicka-PlakM.A. CormackP.A.G. ReubsaetL. HalvorsenT.G. Magnetic synthetic receptors for selective clean-up in protein biomarker quantification.J. Proteome Res.20201983573358210.1021/acs.jproteome.0c0025832614597
    [Google Scholar]
  48. GanH. XuH. A novel aptamer-based online magnetic solid phase extraction method for simultaneous determination of urinary 8-hydroxy-2′-deoxyguanosine and monohydroxylated polycyclic aromatic hydrocarbons.Talanta201920127127910.1016/j.talanta.2019.04.00431122423
    [Google Scholar]
  49. LiZ. SandauC.D. RomanoffL.C. CaudillS.P. SjodinA. NeedhamL.L. PattersonD.G.Jr. Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population.Environ. Res.2008107332033110.1016/j.envres.2008.01.01318313659
    [Google Scholar]
  50. GanH. XuH. A novel aptamer-based online magnetic solid phase extraction method for the selective determination of 8-hydroxy-2′-deoxyguanosine in human urine.Anal. Chim. Acta20181008485610.1016/j.aca.2017.12.03229420943
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073278749231220074740
Loading
/content/journals/cchts/10.2174/0113862073278749231220074740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test