Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background: Cancer remains one of the most serious disease worldwide. Robust metabolism is the hallmark of cancer. PPAT (phosphoribosyl pyrophosphate amidotransferase) catalyzes the first committed step of de novo purine biosynthesis. Hence PPAT, the key regulatory spot in De novo purine nucleotide biosynthesis, is an attractive and credible drug target for leukemia and other cancer therapeutics. Objective: In the present study, detailed computational analysis has been performed for PPAT protein, the key enzyme in de novo purine biosynthesis which is inhibited by many folate derivatives, hence we aimed to investigate and gauge the inhibitory effect of antifolate derivatives; lomexterol (LTX) methotrexate (LTX), and pipretixin (PTX) with human PPAT to effectively capture and inhibit De novo purine biosynthesis pathway. Methods: The sequence to structure computational approaches followed by molecular docking experiments was performed to gain insight into the inhibitory mode, binding orientation and binding affinities of selected antifolate derivatives against important structural features of PPAT. Results: Results indicated a strong affinity of antifolate inhibitors for the conserved active site of PPAT molecule encompassing a number of hydrophobic, hydrogen bonding, Vander Waals and electrostatic interactions. Conclusion: Conclusively, the strong physical interaction of selected antifolate inhibitors with human PPAT suggests the selective inhibition of De novo purine biosynthesis pathway by antifolate derivatives towards cancer therapeutics.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/1568009619666181127115015
2019-05-01
2025-10-26
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/1568009619666181127115015
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test