Skip to content
2000
Volume 16, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Despite advances in therapy, glioblastoma (GBM) is still the most prevalent and lethal brain tumor. Thus, it is imperative to identify new and effective therapies that could improve the lifetime of these patients. It is known that tumor cells, such as glioblastomas present metabolic reprogramming, named “Warburg effect”, recognized nowadays as a hallmark of cancer. This mechanism is associated with a high dependence of tumor cells on the glycolytic metabolism to sustain energy demands and macromolecule synthesis, leading to production of high amounts of lactic and carbonic acids. These metabolic products induce microenvironment acidification, due to up-regulation of several proteins, such as monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs), to maintain the glycolytic phenotype and the intracellular physiological pH. The dependence on glycolytic metabolism and acidic microenvironment on the acquired resistance to standard therapy has been a research focus in glioblastoma therapy response. In this review, we intend to highlight evidence for the importance of lactate transporters and other pH regulators in GBMs, which are frequently overexpressed in GBMs and associated with tumor aggressiveness. Moreover, we will describe how targeting these proteins could constitute new therapeutic strategies to overcome glioma resistance to therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/1568009616666151222150543
2016-06-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/1568009616666151222150543
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test