Skip to content
2000
Volume 14, Issue 1
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Gambogic acid (GA) has been approved by the Chinese Food and Drug Administration for the treatment of lung cancer in clinical trials. However, whether GA has chemosensitizing properties when combined with other chemotherapy agents in the treatment of lung cancer is not known. Here we investigated the effects of GA combined with adriamycin (ADM), a common chemotherapy agent, in regard to their activities and the possible mechanisms against lung cancer in vitro and in vivo. Cell viability results showed that sequential GA-ADM treatment was synergistic, while the reverse sequence and simultaneous treatments were antagonistic or additive, in lung cancer cells and ADM resistant cells, but not in normal cells. The combined use of GA and ADM synergistically displayed apoptosis-inducing activities in lung cancer cells. Moreover, GA in combination with ADM could promote PARP cleavage, enhance caspases activation and decrease the expression of anti-apoptotic proteins in lung cancer cells. The combined use of GA and ADM decreased the expression of P-glycoprotein and increased the accumulation of ADM in lung cancer cells. Furthermore, it was found that, prior to ADM treatment, GA could inhibit NF-κB signaling pathways, which have been validated to confer ADM resistance. The critical role of NF-κB was further confirmed by using PDTC, a NF-κB inhibitor, which significantly increased apoptosis induction by the combination of GA and ADM and inhibited ADM-induced ABCB1 upregulation. Importantly, our results indicated that the combination of GA and ADM exerted enhanced anti-tumor effects on A549 xenograft models through inhibiting NF-κB and P-glycoprotein, and attenuated ADM-induced cardiotoxicity. Collectively, these findings indicate that GA sensitizes lung cancer cells to ADM in vitro and in vivo, providing a rationale for the combined use of GA and ADM in lung cancer chemotherapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/1568009613666131113100634
2014-01-01
2025-09-03
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/1568009613666131113100634
Loading

  • Article Type:
    Research Article
Keyword(s): Adriamycin; apoptosis; gambogic acid; lung cancer; NF-κB; P-glycoprotein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test