Skip to content
2000
Volume 14, Issue 1
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Understanding the molecular mechanisms and the signaling pathways that underlie the pathology of cancer progression is crucial for the development of novel diagnostic and therapeutic tools. A major common mechanism used by cells to regulate intracellular signal transduction pathways is reversible protein phosphorylation which results in profound changes in cellular responses. This mechanism relies on the coordinated action of two families of proteins: protein kinases and protein phosphatases. Interestingly, there are 3 to 5 times fewer phosphatases than kinases, suggesting that the specificity of substrates is not only due to the variety of the catalytic subunits but also to the diversity of the regulatory subunits. This is particularly true for PhosphoProtein Phosphatase 1 (PPP1) for which more than 200 PPP1 Interacting Proteins (PIPs) have thus far been identified. PIPs can act as targeting subunits, substrates and activity regulators. Many PPP1/PIPs complexes are involved in signaling pathways that regulate cellular growth, cell cycle and apoptosis; processes known to be deregulated in cancer. This review will describe the cellular pathways, many of which involve PPP1/PIP complexes, that when deregulated lead to cancer. Furthermore, the possibility of PPP1/PIP complexes being considered novel targets to cancer diagnostic and therapy will be addressed.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/15680096113136660106
2014-01-01
2025-09-05
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/15680096113136660106
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test