Skip to content
2000
Volume 9, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme for degradation of poly(ADP-ribose) by splitting ribose-ribose bonds. Parg-deficient (Parg+/- and Parg-/-) mouse ES cell lines have been established by disrupting both alleles of Parg exon 1 through gene-targeting. A transcript encoding a full length isoform of Parg was eliminated and only low amounts of Parg isoforms were detected in Parg-/- embryonic stem (ES) cells. Poly(ADP-ribose) degradation activity was decreased to one-tenth of that in Parg+/+ ES cells. Parg-/- ES cells exhibited the same growth rate as Parg+/+ ES cells in culture. Sensitivity of Parg-/- ES cells to various DNA damaging agents, including an alkylating agent dimethyl sulfate, cisplatin, gemcitabine, 5-fluorouracil, camptothecin, and γ-irradiation was examined by clonogenic survival assay. Parg-/- ES cells showed enhanced lethality after treatment with dimethyl sulfate, cisplatin and γ-irradiation compared with wildtype (Parg+/+) ES cells (p<0.05, respectively). In contrast, a sensitization effect by Parg-deficiency was not observed with gemcitabine and camptothecin. These results suggest the possibility that functional inhibition of Parg leads to sensitization of tumor cells to some chemo- and radiation therapies.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/156800909790192419
2009-12-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/156800909790192419
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test