Skip to content
2000
Volume 7, Issue 4
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Ionizing radiation (IR) plays a key role in both areas of carcinogenesis and anticancer radiotherapy. The ATM (ataxia-telangiectasia mutated) protein, a sensor to IR and other DNA-damaging agents, activates a wide variety of effectors involved in multiple signaling pathways, cell cycle checkpoints, DNA repair and apoptosis. Accumulated evidence also indicates that the transcription factor NF-κB (nuclear factor-kappaB) plays a critical role in cellular protection against a variety of genotoxic agents including IR, and inhibition of NF-κB leads to radiosensitization in radioresistant cancer cells. NF-κB was found to be defective in cells from patients with A-T (ataxia-telangiectasia) who are highly sensitive to DNA damage induced by IR and UV lights. Cells derived from A-T individuals are hypersensitive to killing by IR. Both ATM and NF-κB deficiencies result in increased sensitivity to DNA double strand breaks. Therefore, identification of the molecular linkage between the kinase ATM and NF-κB signaling in tumor response to therapeutic IR will lead to a better understanding of cellular response to IR, and will promise novel molecular targets for therapy-associated tumor resistance. This review article focuses on recent findings related to the relationship between ATM and NF-κB in response to IR. Also, the association of ATM with the NF-κB subunit p65 in adaptive radiation response, recently observed in our lab, is also discussed.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/156800907780809769
2007-06-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/156800907780809769
Loading

  • Article Type:
    Research Article
Keyword(s): ATM; ionizing radiation; NF-κB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test