Skip to content
2000
Volume 6, Issue 2
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

About one third of osteosarcoma patients develop lung metastasis refractory to chemotherapy. Recent studies indicate that biological response modifiers activating the patient's immune system may help controlling minimal residual disease via pathways distinct from those used by cytotoxic drugs, and therefore prove effective against tumor resistance. Muramyl tripeptide phosphatidylethanolamine (MTP-PE) is a synthetic lipophilic glycopeptide capable of activating monocytes and macrophages to a tumoricidal state. When intercalated in multilamellar liposomes (L-MTP-PE) and injected intravenously, it targets lung, liver, and spleen macrophages. Therapeutic activity of L-MTP-PE was demonstrated in several preclinical models of experimental lung metastasis and in clinical trials in dogs with osteosarcoma. Although macrophage activation was shown to be directly involved in the in vivo anti-metastatic activity of this molecule, cytokine and chemokine secretion by activated macrophages could induce recruitment and stimulation of other immune cells, which may in turn indirectly contribute to the anti-tumor effect. L-MTP-PE has undergone clinical development in humans. In early trials, most side effects of L-MTP-PE were minimal. L-MTP-PE showed signs of efficacy in treatment of patients with recurrent osteosarcoma and the encouraging results from phase II studies led to a phase III trial conducted by the Children's Oncology Group in patients with newly diagnosed high-grade osteosarcoma. Patients were treated with or without L-MTP-PE in combination with multi-drug chemotherapy in adjuvant setting; significantly higher overall survival and disease-free survival were observed in the group receiving L-MTP-PE.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/156800906776056473
2006-03-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/156800906776056473
Loading

  • Article Type:
    Research Article
Keyword(s): chemotherapy; innate immunity; liposomes; macrophages; muramyl peptides; Osteosarcoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test