Skip to content
2000
Volume 1, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Recent progress made in molecular biology, biotechnology, and genetics, especially in identifying, cloning, sequencing and characterization of normal and pathogenic genes, has led to the development of genetic therapy. Major efforts in the field can be summarized in two general approaches: gene therapy and antisense therapy. The second is to deliver to the target cells antisense molecules that target to mRNA with which they can hybridize and specifically inhibit the expression of pathogenic genes. Antisense oligonucleotides offer the possibility of specific, rational, genetic-based therapeutics. With encouraging results from preclinical and clinical studies of antisense oligonucleotides in the past decade, significant progress has been made in developing antisense therapy, with the first antisense drug now being approved for clinical use. In this article, we will discuss approaches to developing these drugs from preclinical to clinical settings. Of particular interest for the area of human cancer therapy, several cancer targets, including bcl-2, BCR-ABL, C-raf-1, Ha-ras, c-myc, PKC, PKA, p53 and MDM2, are reviewed as examples to illustrate the progress in this field and emphasize the importance of target selection and advanced antisense chemistry in the development of antisense therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/1568009013334133
2001-11-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/ccdt/10.2174/1568009013334133
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test