Skip to content
2000
image of Inhibition of CD24 Expression Enhances the Anti-Melanoma Effect of

Abstract

Introduction

Melanoma is a highly aggressive skin cancer that arises from transformed epidermal melanocytes and is one of the malignancies with the fastest proliferation rates globally. Angiogenesis has been identified as a critical target for melanoma therapy, and endostatin has been verified to impede endogenous angiogenesis. However, some patients' therapeutic responses remain unsatisfactory. CD24, which functions as an anti-phagocytic signal, represents a potential target for tumor immunotherapy. Thus, in this study, we investigated the anti-melanoma effects of combined CD24 inhibition and endostatin treatment.

Materials and Methods

The co-expressed plasmid was constructed for functional verification. A melanoma-bearing mouse model was used to observe changes in tumor size during treatment. Protein expression, apoptosis, immune cell infiltration, and macrophage subset proportions were measured using Western blot, immunofluorescence, TUNEL, and flow cytometry assays.

Results

The co-expressed plasmid significantly inhibited CD24 and VEGF expression in cells. The combination therapy promoted tumor cell apoptosis and decreased angiogenesis. It also increased infiltration of M1 macrophages, T lymphocytes, and NK cells in tumor tissue and the spleen. The combined plasmid-based therapy considerably suppressed tumor growth and lengthened the survival time of mice.

Discussion

The combination therapy remodeled the immunosuppressive tumor microenvironment, enhancing M1 macrophage and T lymphocyte infiltration while suppressing angiogenesis via dual inhibition of CD24 and VEGF.

Conclusion

Combining CD24 inhibition with antiangiogenic therapy could offer a novel therapeutic strategy for melanoma.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096419727251121103534
2026-01-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Zhang Y. Lan S. Wu D. Advanced acral melanoma therapies: Current status and future directions. Curr. Treat. Options Oncol. 2022 23 10 1405 1427 10.1007/s11864‑022‑01007‑6 36125617
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Tasdogan A. Sullivan R.J. Katalinic A. Lebbe C. Whitaker D. Puig S. van de Poll-Franse L.V. Massi D. Schadendorf D. Cutaneous melanoma. Nat. Rev. Dis. Primers 2025 11 1 23 10.1038/s41572‑025‑00603‑8 40180935
    [Google Scholar]
  4. Schadendorf D. van Akkooi A.C.J. Berking C. Griewank K.G. Gutzmer R. Hauschild A. Stang A. Roesch A. Ugurel S. Melanoma. Lancet 2018 392 10151 971 984 10.1016/S0140‑6736(18)31559‑9 30238891
    [Google Scholar]
  5. Mulder W.J.M. Griffioen A.W. Imaging of angiogenesis. Angiogenesis 2010 13 2 71 74 10.1007/s10456‑010‑9178‑9 20559867
    [Google Scholar]
  6. Tsui K.H. Wu M.Y. Lin L.T. Wen Z.H. Li Y.H. Chu P.Y. Li C.J. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Theranostics 2019 9 22 6631 6645 10.7150/thno.33353 31588240
    [Google Scholar]
  7. Corrie P.G. Basu B. Ahmad Zaki K. Targeting angiogenesis in melanoma: Prospects for the future. Ther. Adv. Med. Oncol. 2010 2 6 367 380 10.1177/1758834010380101 21789148
    [Google Scholar]
  8. Shi Z. Kuai M. Li B. Akowuah C.F. Wang Z. Pan Y. Tang M. Yang X. Lü P. The role of VEGF in Cancer angiogenesis and tumorigenesis: Insights for anti-VEGF therapy. Cytokine 2025 189 156908 10.1016/j.cyto.2025.156908 40049050
    [Google Scholar]
  9. Chen L. Lin G. Chen K. Liang R. Wan F. Zhang C. Tian G. Zhu X. VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma. J. Cancer 2020 11 24 7291 7301 10.7150/jca.46429 33193893
    [Google Scholar]
  10. Mahaki H. Nobari S. Tanzadehpanah H. Babaeizad A. Kazemzadeh G. Mehrabzadeh M. Valipour A. Yazdinezhad N. Manoochehri H. Yang P. Sheykhhasan M. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights. Biomed. Pharmacother. 2025 186 118023 10.1016/j.biopha.2025.118023
    [Google Scholar]
  11. Liu G. Chen T. Ding Z. Wang Y. Wei Y. Wei X. Inhibition of FGF‐FGFR and VEGF‐VEGFR signalling in cancer treatment. Cell Prolif. 2021 54 4 13009 10.1111/cpr.13009 33655556
    [Google Scholar]
  12. O’Reilly M.S. Boehm T. Shing Y. Fukai N. Vasios G. Lane W.S. Flynn E. Birkhead J.R. Olsen B.R. Folkman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997 88 2 277 285 10.1016/S0092‑8674(00)81848‑6 9008168
    [Google Scholar]
  13. Yuan M. Zhai Y. Men Y. Wang J. Deng L. Wang W. Bao Y. Yang X. Sun S. Ma Z. Liu Y. Wang J. Zhu H. Hui Z. Endostar (rh‐endostatin) improves efficacy of concurrent chemoradiotherapy for locally advanced non‐small cell lung cancer: A systematic review and meta‐analysis. Thorac. Cancer 2021 12 23 3208 3215 10.1111/1759‑7714.14188 34676669
    [Google Scholar]
  14. Kim Y.M. Hwang S. Kim Y.M. Pyun B.J. Kim T.Y. Lee S.T. Gho Y.S. Kwon Y.G. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 2002 277 31 27872 27879 10.1074/jbc.M202771200 12029087
    [Google Scholar]
  15. Matsumoto G. Hirohata R. Hayashi K. Sugimoto Y. Kotani E. Shimabukuro J. Hirano T. Nakajima Y. Kawamata S. Mori H. Control of angiogenesis by VEGF and endostatin-encapsulated protein microcrystals and inhibition of tumor angiogenesis. Biomaterials 2014 35 4 1326 1333 10.1016/j.biomaterials.2013.10.051 24210874
    [Google Scholar]
  16. Wang N. Gao Q. Tang J. Jiang Y. Yang L. Shi X. Chen Y. Zhang Y. Fu S. Lin S. Anti-tumor effect of local injectable hydrogel-loaded endostatin alone and in combination with radiotherapy for lung cancer. Drug Deliv. 2021 28 1 183 194 10.1080/10717544.2020.1869864 33427520
    [Google Scholar]
  17. Chu X.D. Bao H. Lin Y.J. Chen R.X. Zhang Y.R. Huang T. He J.S. Huangfu S.C. Pan Y.L. Ding H. Endostatin induces normalization of blood vessels in colorectal cancer and promotes infiltration of CD8+ T cells to improve anti-PD-L1 immunotherapy. Front. Immunol. 2022 13 965492 10.3389/fimmu.2022.965492 36389685
    [Google Scholar]
  18. Abyaneh R. Ghalehtaki R. Sanford N.N. Combination of immune checkpoint inhibitors and radiotherapy in locally advanced esophagogastric junction adenocarcinoma: A review. Cancer 2024 130 23 4040 4051 10.1002/cncr.35561 39297403
    [Google Scholar]
  19. Zhu S. Zhang T. Zheng L. Liu H. Song W. Liu D. Li Z. Pan C. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 2021 14 1 156 10.1186/s13045‑021‑01164‑5 34579759
    [Google Scholar]
  20. Obenauf A.C. Mechanism-based combination therapies for metastatic cancer. Sci. Transl. Med. 2022 14 655 eadd0887 10.1126/scitranslmed.add0887 35895833
    [Google Scholar]
  21. Zhou Z. Edil B.H. Li M. Combination therapies for cancer: Challenges and opportunities. BMC Med. 2023 21 1 171 10.1186/s12916‑023‑02852‑4 37143031
    [Google Scholar]
  22. Dyikanov D. Zaitsev A. Vasileva T. Wang I. Sokolov A.A. Bolshakov E.S. Frank A. Turova P. Golubeva O. Gantseva A. Kamysheva A. Shpudeiko P. Krauz I. Abdou M. Chasse M. Conroy T. Merriam N.R. Alesse J.E. English N. Shpak B. Shchetsova A. Tikhonov E. Filatov I. Radko A. Bolshakova A. Kachalova A. Lugovykh N. Bulahov A. Kilina A. Asanbekov S. Zheleznyak I. Skoptsov P. Alekseeva E. Johnson J.M. Curry J.M. Linnenbach A.J. South A.P. Yang E. Morozov K. Terenteva A. Nigmatullina L. Fastovetz D. Bobe A. Balabanian L. Nomie K. Yong S.T. Davitt C.J.H. Ryabykh A. Kudryashova O. Tazearslan C. Bagaev A. Fowler N. Luginbuhl A.J. Ataullakhanov R.I. Goldberg M.F. Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer. Cancer Cell 2024 42 5 759 779.e12 10.1016/j.ccell.2024.04.008 38744245
    [Google Scholar]
  23. Chhabra N. Kennedy J. A review of cancer immunotherapy toxicity: Immune checkpoint inhibitors. J. Med. Toxicol. 2021 17 4 411 424 10.1007/s13181‑021‑00833‑8 33826117
    [Google Scholar]
  24. Hines J.B. Kacew A.J. Sweis R.F. The development of STING agonists and emerging results as a cancer immunotherapy. Curr. Oncol. Rep. 2023 25 3 189 199 10.1007/s11912‑023‑01361‑0 36705879
    [Google Scholar]
  25. Arrieta V.A. Dmello C. McGrail D.J. Brat D.J. Lee-Chang C. Heimberger A.B. Chand D. Stupp R. Sonabend A.M. Immune checkpoint blockade in glioblastoma: From tumor heterogeneity to personalized treatment. J. Clin. Invest. 2023 133 2 163447 10.1172/JCI163447 36647828
    [Google Scholar]
  26. Topalian S.L. Forde P.M. Emens L.A. Yarchoan M. Smith K.N. Pardoll D.M. Neoadjuvant immune checkpoint blockade: A window of opportunity to advance cancer immunotherapy. Cancer Cell 2023 41 9 1551 1566 10.1016/j.ccell.2023.07.011 37595586
    [Google Scholar]
  27. Liu B. Zhang Y. Wang D. Hu X. Zhang Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 2022 3 9 1123 1136 10.1038/s43018‑022‑00433‑7 36138134
    [Google Scholar]
  28. Li B. Chan H.L. Chen P. Immune checkpoint inhibitors: Basics and challenges. Curr. Med. Chem. 2019 26 17 3009 3025 10.2174/0929867324666170804143706 28782469
    [Google Scholar]
  29. Voloshin T. Kaynan N. Davidi S. Porat Y. Shteingauz A. Schneiderman R.S. Zeevi E. Munster M. Blat R. Tempel Brami C. Cahal S. Itzhaki A. Giladi M. Kirson E.D. Weinberg U. Kinzel A. Palti Y. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy. Cancer Immunol. Immunother. 2020 69 7 1191 1204 10.1007/s00262‑020‑02534‑7 32144446
    [Google Scholar]
  30. Yi M. Zheng X. Niu M. Zhu S. Ge H. Wu K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022 21 1 28 10.1186/s12943‑021‑01489‑2 35062949
    [Google Scholar]
  31. Yamaguchi H. Hsu J.M. Yang W.H. Hung M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 2022 19 5 287 305 10.1038/s41571‑022‑00601‑9 35132224
    [Google Scholar]
  32. Guo C. Dai X. Du Y. Xiong X. Gui X. Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol. Immunother. 2024 73 10 210 10.1007/s00262‑024‑03794‑3 39123089
    [Google Scholar]
  33. Vanmeerbeek I. Naulaerts S. Sprooten J. Laureano R.S. Govaerts J. Trotta R. Pretto S. Zhao S. Cafarello S.T. Verelst J. Jacquemyn M. Pociupany M. Boon L. Schlenner S.M. Tejpar S. Daelemans D. Mazzone M. Garg A.D. Targeting conserved TIM3 + VISTA + tumor-associated macrophages overcomes resistance to cancer immunotherapy. Sci. Adv. 2024 10 29 eadm8660 10.1126/sciadv.adm8660 39028818
    [Google Scholar]
  34. Cai L. Li Y. Tan J. Xu L. Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J. Hematol. Oncol. 2023 16 1 101 10.1186/s13045‑023‑01499‑1 37670328
    [Google Scholar]
  35. Eyvazi S. Kazemi B. Dastmalchi S. Bandehpour M. Involvement of CD24 in multiple cancer related pathways makes it an interesting new target for cancer therapy. Curr. Cancer Drug Targets 2018 18 4 328 336 10.2174/1570163814666170818125036 28820056
    [Google Scholar]
  36. Bradley C.A. CD24 — a novel ‘don’t eat me’ signal. Nat. Rev. Cancer 2019 19 10 541 10.1038/s41568‑019‑0193‑x 31406301
    [Google Scholar]
  37. Tang M.R. Guo J.Y. Wang D. Xu N. Identification of CD24 as a marker for tumorigenesis of melanoma. OncoTargets Ther. 2018 11 3401 3406 10.2147/OTT.S157043 29928131
    [Google Scholar]
  38. Barkal A.A. Brewer R.E. Markovic M. Kowarsky M. Barkal S.A. Zaro B.W. Krishnan V. Hatakeyama J. Dorigo O. Barkal L.J. Weissman I.L. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019 572 7769 392 396 10.1038/s41586‑019‑1456‑0 31367043
    [Google Scholar]
  39. Zhu C. Kros J.M. Cheng C. Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro-oncol. 2017 19 11 1435 1446 10.1093/neuonc/nox081 28575312
    [Google Scholar]
  40. Toge H. Inagaki T. Kojimoto Y. Shinka T. Hara I. Angiogenesis in renal cell carcinoma: The role of tumor‐associated macrophages. Int. J. Urol. 2009 16 10 801 807 10.1111/j.1442‑2042.2009.02377.x 19811548
    [Google Scholar]
  41. Shi Y. Oeh J. Hitz A. Hedehus M. Eastham-Anderson J. Peale F.V. Hamilton P. O’Brien T. Sampath D. Carano R.A.D. Monitoring and targeting anti-vegf induced hypoxia within the viable tumor by 19 F–MRI and multispectral analysis. Neoplasia 2017 19 11 950 959 10.1016/j.neo.2017.07.010 28987998
    [Google Scholar]
  42. Gu J. Yang S. Wang X. Wu Y. Wei J. Xu J. Hypoxic lung adenocarcinoma‐derived exosomal miR ‐1290 induces M2 macrophage polarization by targeting SOCS3. Cancer Med. 2023 12 11 12639 12652 10.1002/cam4.5954 37081748
    [Google Scholar]
  43. Kristen A.V. Ajroud-Driss S. Conceição I. Gorevic P. Kyriakides T. Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag. 2019 9 1 5 23 10.2217/nmt‑2018‑0033 30480471
    [Google Scholar]
  44. Chen X. Mangala L.S. Rodriguez-Aguayo C. Kong X. Lopez-Berestein G. Sood A.K. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018 37 1 107 124 10.1007/s10555‑017‑9717‑6 29243000
    [Google Scholar]
  45. Tuschl T. Borkhardt A. Small interfering RNAs: A revolutionary tool for the analysis of gene function and gene therapy. Mol. Interv. 2002 2 3 158 167 10.1124/mi.2.3.158 14993376
    [Google Scholar]
  46. Zhao M. Yang M. Li X.M. Jiang P. Baranov E. Li S. Xu M. Penman S. Hoffman R.M. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 2005 102 3 755 760 10.1073/pnas.0408422102 15644448
    [Google Scholar]
  47. Zhao T. Wei T. Guo J. Wang Y. Shi X. Guo S. Jia X. Jia H. Feng Z. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide. Cell Death Dis. 2019 10 3 164 10.1038/s41419‑019‑1418‑3 30778049
    [Google Scholar]
  48. Wu L. Du Z. Li L. Qiao L. Zhang S. Yin X. Chang X. Li C. Hua Z. Camouflaging attenuated Salmonella by cryo-shocked macrophages for tumor-targeted therapy. Signal Transduct. Target. Ther. 2024 9 1 14 10.1038/s41392‑023‑01703‑1 38195682
    [Google Scholar]
  49. Guo H. Zhang J. Inal C. Nguyen T. Fruehauf J.H. Keates A.C. Li C.J. Targeting tumor gene by shRNA-expressing Salmonella-mediated RNAi. Gene Ther. 2011 18 1 95 105 10.1038/gt.2010.112 20811467
    [Google Scholar]
  50. Williams J.S. Higgins A.T. Stott K.J. Thomas C. Farrell L. Bonnet C.S. Peneva S. Derrick A.V. Hay T. Wang T. Morgan C. Dwyer S. D’Ambrogio J. Hogan C. Smalley M.J. Parry L. Dyson P. Enhanced bacterial cancer therapy delivering therapeutic RNA interference of c-Myc. Cell Biosci. 2024 14 1 38 10.1186/s13578‑024‑01206‑8 38521952
    [Google Scholar]
  51. Kwon S.Y. Thi-Thu Ngo H. Son J. Hong Y. Min J.J. Exploiting bacteria for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2024 21 8 569 589 10.1038/s41571‑024‑00908‑9 38840029
    [Google Scholar]
  52. Zhao T. Feng Y. Guo M. Zhang C. Wu Q. Chen J. Guo S. Liu S. Zhou Q. Wang Z. Fan W. Zhang Y. Jia H. Feng Z. Combination of attenuated Salmonella carrying PD‐1 siRNA with nifuroxazide for colon cancer therapy. J. Cell. Biochem. 2020 121 2 1973 1985 10.1002/jcb.29432 31692041
    [Google Scholar]
  53. Li X. Li Y. Wang B. Ji K. Liang Z. Guo B. Hu J. Yin D. Du Y. Kopecko D.J. Kalvakolanu D.V. Zhao X. Xu D. Zhang L. Delivery of the co-expression plasmid pEndo-Si-Stat3 by attenuated Salmonella serovar typhimurium for prostate cancer treatment. J. Cancer Res. Clin. Oncol. 2013 139 6 971 980 10.1007/s00432‑013‑1398‑0 23463096
    [Google Scholar]
  54. Zhang L. Gao L. Zhao L. Guo B. Ji K. Tian Y. Wang J. Yu H. Hu J. Kalvakolanu D.V. Kopecko D.J. Zhao X. Xu D.Q. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 2007 67 12 5859 5864 10.1158/0008‑5472.CAN‑07‑0098 17575154
    [Google Scholar]
  55. Skora J.P. Antkiewicz M. Kupczynska D. Kulikowska K. Strzelec B. Janczak D. Barc P. Local intramuscular administration of ANG1 and VEGF genes using plasmid vectors mobilizes CD34+ cells to peripheral tissues and promotes angiogenesis in an animal model. Biomed. Pharmacother. 2021 143 112186 10.1016/j.biopha.2021.112186
    [Google Scholar]
  56. Chen Z. Xu S. Xu W. Huang J. Zhang G. Lei L. Shao X. Wang X. Expression of cluster of differentiation 34 and vascular endothelial growth factor in breast cancer, and their prognostic significance. Oncol. Lett. 2015 10 2 723 729 10.3892/ol.2015.3348 26622560
    [Google Scholar]
  57. Cardano M. Tribioli C. Prosperi E. Targeting proliferating cell nuclear antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation. Curr. Cancer Drug Targets 2020 20 4 240 252 10.2174/1568009620666200115162814 31951183
    [Google Scholar]
  58. Yang C. Zhang J. Ding M. Xu K. Li L. Mao L. Zheng J. Ki67 targeted strategies for cancer therapy. Clin. Transl. Oncol. 2018 20 5 570 575 10.1007/s12094‑017‑1774‑3 29058263
    [Google Scholar]
  59. Liu H. Hai L. Tian J. Xiang J. Fan Y. Zhang H. Liu J. Zhang X. Anti-CD24 neutralizing antibody exacerbates Concanavalin A-induced acute liver injury in mice via liver M1 macrophages. Immunol. Lett. 2017 181 87 93 10.1016/j.imlet.2016.11.016 27919748
    [Google Scholar]
  60. Salamone M.C. Rosselot C. Salamone G.V. Barboza M. Kado M. Fainboim L. Antibodies recognizing CD24 LAP epitope on human T cells enhance CD28 and IL-2 T cell proliferation. J. Leukoc. Biol. 2001 69 2 215 223 10.1189/jlb.69.2.215 11272271
    [Google Scholar]
  61. Klemm F. Joyce J.A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015 25 4 198 213 10.1016/j.tcb.2014.11.006 25540894
    [Google Scholar]
  62. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  63. Kang J. La Manna F. Bonollo F. Sampson N. Alberts I.L. Mingels C. Afshar-Oromieh A. Thalmann G.N. Karkampouna S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 2022 530 156 169 10.1016/j.canlet.2022.01.015 35051532
    [Google Scholar]
  64. Niu M. Yi M. Wu Y. Lyu L. He Q. Yang R. Zeng L. Shi J. Zhang J. Zhou P. Zhang T. Mei Q. Chu Q. Wu K. Synergistic efficacy of simultaneous anti-TGF-β/VEGF bispecific antibody and PD-1 blockade in cancer therapy. J. Hematol. Oncol. 2023 16 1 94 10.1186/s13045‑023‑01487‑5 37573354
    [Google Scholar]
  65. Tran T.T. Caulfield J. Zhang L. Schoenfeld D. Djureinovic D. Chiang V.L. Oria V. Weiss S.A. Olino K. Jilaveanu L.B. Kluger H.M. Lenvatinib or anti-VEGF in combination with anti–PD-1 differentially augments antitumor activity in melanoma. JCI Insight 2023 8 7 157347 10.1172/jci.insight.157347 36821392
    [Google Scholar]
  66. Miyazaki S. Kikuchi H. Iino I. Uehara T. Setoguchi T. Fujita T. Hiramatsu Y. Ohta M. Kamiya K. Kitagawa K. Kitagawa M. Baba S. Konno H. Anti-VEGF antibody therapy induces tumor hypoxia and stanniocalcin 2 expression and potentiates growth of human colon cancer xenografts. Int. J. Cancer 2014 135 2 295 307 10.1002/ijc.28686 24375080
    [Google Scholar]
  67. Park J.E. Dutta B. Tse S.W. Gupta N. Tan C.F. Low J.K. Yeoh K.W. Kon O.L. Tam J.P. Sze S.K. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 2019 38 26 5158 5173 10.1038/s41388‑019‑0782‑x 30872795
    [Google Scholar]
  68. Zhang W. Zeng Y. Xiao Q. Wu Y. Liu J. Wang H. Luo Y. Zhan J. Liao N. Cai Y. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat. Commun. 2024 15 1 5670 10.1038/s41467‑024‑49825‑6 38971872
    [Google Scholar]
  69. Vasileva M.H. Bennemann A. Zachmann K. Schön M.P. Frank J. Ulaganathan V.K. CD24 flags anastasis in melanoma cells. Apoptosis 2025 30 1-2 1 15 10.1007/s10495‑024‑01990‑1 39136818
    [Google Scholar]
  70. Swartz M.A. Iida N. Roberts E.W. Sangaletti S. Wong M.H. Yull F.E. Coussens L.M. DeClerck Y.A. Tumor microenvironment complexity: Emerging roles in cancer therapy. Cancer Res. 2012 72 10 2473 2480 10.1158/0008‑5472.CAN‑12‑0122 22414581
    [Google Scholar]
  71. Wynn T.A. Chawla A. Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature 2013 496 7446 445 455 10.1038/nature12034 23619691
    [Google Scholar]
  72. Guerriero J.L. Macrophages. Int. Rev. Cell Mol. Biol. 2019 342 73 93 10.1016/bs.ircmb.2018.07.001 30635094
    [Google Scholar]
  73. Qian B.Z. Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010 141 1 39 51 10.1016/j.cell.2010.03.014 20371344
    [Google Scholar]
  74. Anderson N.R. Minutolo N.G. Gill S. Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021 81 5 1201 1208 10.1158/0008‑5472.CAN‑20‑2990 33203697
    [Google Scholar]
  75. Chen Y. Jin H. Song Y. Huang T. Cao J. Tang Q. Zou Z. Targeting tumor‐associated macrophages: A potential treatment for solid tumors. J. Cell. Physiol. 2021 236 5 3445 3465 10.1002/jcp.30139 33200401
    [Google Scholar]
  76. Altevogt P. Sammar M. Hüser L. Kristiansen G. Novel insights into the function of CD24: A driving force in cancer. Int. J. Cancer 2021 148 3 546 559 10.1002/ijc.33249 32790899
    [Google Scholar]
  77. CD24 Is a CD24 Is a “Don’t Eat Me” Signal That Promotes Tumor Immune Escape. Cancer Discov. 2019 9 9 1156 10.1158/2159‑8290.CD‑RW2019‑123
    [Google Scholar]
  78. Yap T.A. Parkes E.E. Peng W. Moyers J.T. Curran M.A. Tawbi H.A. Development of immunotherapy combination strategies in cancer. Cancer Discov. 2021 11 6 1368 1397 10.1158/2159‑8290.CD‑20‑1209 33811048
    [Google Scholar]
  79. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005 69 Suppl. 3 4 10 10.1159/000088478 16301830
    [Google Scholar]
  80. Xu S. Tang J. Wang C. Liu J. Fu Y. Luo Y. CXCR7 promotes melanoma tumorigenesis via Src kinase signaling. Cell Death Dis. 2019 10 3 191 10.1038/s41419‑019‑1442‑3 30804329
    [Google Scholar]
  81. Pircher A. Hilbe W. Heidegger I. Drevs J. Tichelli A. Medinger M. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int. J. Mol. Sci. 2011 12 10 7077 7099 10.3390/ijms12107077 22072937
    [Google Scholar]
  82. Liang J. Liu X. Xie Q. Chen G. Li X. Jia Y. Yin B. Qu X. Li Y. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma. Chin. J. Cancer Res. 2016 28 4 452 460 10.21147/j.issn.1000‑9604.2016.04.09 27647974
    [Google Scholar]
  83. Wu J. Zhao X. Sun Q. Jiang Y. Zhang W. Luo J. Li Y. Synergic effect of PD-1 blockade and endostar on the PI3K/AKT/mTOR-mediated autophagy and angiogenesis in Lewis lung carcinoma mouse model. Biomed. Pharmacother. 2020 125 109746 10.1016/j.biopha.2019.109746
    [Google Scholar]
  84. Anakha J. Prasad Y.R. Pande A.H. Endostatin in disease modulation: From cancer to beyond. Vascul. Pharmacol. 2025 158 107459 10.1016/j.vph.2024.107459 39708990
    [Google Scholar]
  85. Ou D.L. Chen C.W. Hsu C.L. Chung C.H. Feng Z.R. Lee B.S. Cheng A.L. Yang M.H. Hsu C. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J. Immunother. Cancer 2021 9 3 001657 10.1136/jitc‑2020‑001657 33753566
    [Google Scholar]
  86. Luo Y. He J. Tao X. Wang H. Fang Q. Guo S. Song C. miR 20b negatively regulates VEGF expression by targeting STAT3 in H22 hepatocellular carcinoma cells. Oncol. Rep. 2018 40 5 2806 2813 10.3892/or.2018.6651 30132576
    [Google Scholar]
  87. Ma X. Ning S. Cyanidin‐3‐glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother. Res. 2019 33 1 81 89 10.1002/ptr.6201 30251280
    [Google Scholar]
  88. Cao J. Liu C. Mechanistic studies of tumor-associated macrophage immunotherapy. Front. Immunol. 2024 15 1476565 10.3389/fimmu.2024.1476565 39403370
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096419727251121103534
Loading
/content/journals/ccdt/10.2174/0115680096419727251121103534
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: tumor immunology ; Melanoma ; CD24 ; angiogenesis ; immunotherapy ; macrophages
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test