Skip to content
2000
image of Zinc-Facilitated Enzyme Disruption: Thiazolidinediones as Potent Carbonic Anhydrase Inhibitors in Hypoxic Cancer Microenvironments

Abstract

Introduction

Thiazolidinedione (TZD) derivatives have gained significant attention as anti-cancer agents due to their diverse biological activities. The objective of the research was to investigate the potential of thiazolidine derivatives as inhibitors of Carbonic anhydrase XII, an isoform overexpressed in hypoxic tumor environments, to explore their application as anticancer agents targeting breast cancer.

Methods

The study employed a computational approach to evaluate thiazolidine derivatives as potential CA XII inhibitors. Acute toxicity and safety were evaluated using ProTox 3.0. Molecular docking was conducted to study interactions with the zinc-bound active site of CA XII. Molecular dynamics simulations were performed to validate the stability of the ligand-enzyme complex over 250 ns.

Results

TZD derivatives demonstrated favorable physicochemical properties, high gastrointestinal absorption, and low toxicity risks. Molecular docking studies showed strong binding affinities with key hydrogen bonding and zinc coordination at the CA XII active site. Toxicity predictions indicated that most compounds had acceptable safety margins, reinforcing their potential as safe and effective CA XII inhibitors.

Discussion

The findings suggest that thiazolidine scaffolds could serve as promising small-molecule inhibitors of CA XII by targeting its zinc-bound catalytic site, a mechanism consistent with previously reported CA inhibitor pharmacology.

Conclusion

The study demonstrates that TZD derivatives possess promising characteristics as CA XII inhibitors, with favorable physicochemical properties, strong binding affinity, stable ligand-protein interactions, and acceptable safety profiles. These findings highlight their potential for further in vitro and in vivo validation, supporting the continued exploration of thiazolidinedione scaffolds in the development of targeted anticancer therapies.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096410336250918141943
2025-10-08
2025-11-07
Loading full text...

Full text loading...

References

  1. Kiri S. Ryba T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024 23 1 154 10.1186/s12943‑024‑02069‑w 39095874
    [Google Scholar]
  2. Basha N.J. Small molecules as anti‐inflammatory agents: Molecular mechanisms and heterocycles as inhibitors of signaling pathways. ChemistrySelect 2023 8 9 202204723 10.1002/slct.202204723
    [Google Scholar]
  3. Popa M.T. Nodiţi A. Peleaşa T.M. Stoleru S. Blidaru A. Breast cancer: A heterogeneous pathology. prognostic and predictive factors - A narrative review. Chirurgia 2025 120 1 32 47 10.21614/chirurgia.3100 40051316
    [Google Scholar]
  4. Zhou R. Tang X. Wang Y. Emerging strategies to investigate the biology of early cancer. Nat. Rev. Cancer 2024 24 12 850 866 10.1038/s41568‑024‑00754‑y 39433978
    [Google Scholar]
  5. Zhang Y. Zhang H. Wang M. Schmid T. Xin Z. Kozhuharova L. Yu W.K. Huang Y. Cai F. Biskup E. Hypoxia in breast cancer—scientific translation to therapeutic and diagnostic clinical applications. Front. Oncol. 2021 11 652266 10.3389/fonc.2021.652266 33777815
    [Google Scholar]
  6. Zhi S. Chen C. Huang H. Zhang Z. Zeng F. Zhang S. Hypoxia-inducible factor in breast cancer: Role and target for breast cancer treatment. Front. Immunol. 2024 15 1370800 10.3389/fimmu.2024.1370800 38799423
    [Google Scholar]
  7. Ma S. Zhao Y. Lee W.C. Ong L.T. Lee P.L. Jiang Z. Oguz G. Niu Z. Liu M. Goh J.Y. Wang W. Bustos M.A. Ehmsen S. Ramasamy A. Hoon D.S.B. Ditzel H.J. Tan E.Y. Chen Q. Yu Q. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. Nat. Commun. 2022 13 1 4118 10.1038/s41467‑022‑31764‑9 35840558
    [Google Scholar]
  8. Waheed A. Sly W.S. Carbonic anhydrase XII functions in health and disease. Gene 2017 623 33 40 10.1016/j.gene.2017.04.027 28433659
    [Google Scholar]
  9. Tafreshi N.K. Lloyd M.C. Proemsey J.B. Bui M.M. Kim J. Gillies R.J. Morse D.L. Evaluation of CAIX and CAXII expression in breast cancer at varied O 2 levels: CAIX is the superior surrogate imaging biomarker of tumor hypoxia. Mol. Imaging Biol. 2016 18 2 219 231 10.1007/s11307‑015‑0885‑x 26276155
    [Google Scholar]
  10. Supuran C.T. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin. Investig. Drugs 2018 27 12 963 970 10.1080/13543784.2018.1548608 30426805
    [Google Scholar]
  11. Marks P.A. Breslow R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007 25 1 84 90 10.1038/nbt1272 17211407
    [Google Scholar]
  12. Cathcart J. Pulkoski-Gross A. Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015 2 1 26 34 10.1016/j.gendis.2014.12.002 26097889
    [Google Scholar]
  13. Blanquicett C. Roman J. Hart C.M. Thiazolidinediones as anti cancer agents. Cancer Ther. 2008 6 A 25 34 19079765
    [Google Scholar]
  14. Ranjan G. Ranjan S. Sunita P. Pattanayak S.P. Thiazolidinedione derivatives in cancer therapy: Exploring novel mechanisms, therapeutic potentials, and future horizons in oncology. Naunyn Schmiedebergs Arch. Pharmacol. 2024 1 21 39621087
    [Google Scholar]
  15. Srinivasan P. Vijayakumar S. Kothandaraman S. Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018 8 2 109 118 10.1016/j.jpha.2017.10.005 29736297
    [Google Scholar]
  16. Liu J.Q. Dai S.X. Zheng J.J. Guo Y.C. Li W.X. Li G.H. Huang J.F. The identification and molecular mechanism of anti-stroke traditional Chinese medicinal compounds. Sci. Rep. 2017 7 1 41406 10.1038/srep41406 28117389
    [Google Scholar]
  17. Pereira A.S.P. den Haan H. Peña-García J. Moreno M.M. Pérez-Sánchez H. Apostolides Z. Exploring African medicinal plants for potential anti-diabetic compounds with the DIA-DB inverse virtual screening web server. Molecules 2019 24 10 2002 10.3390/molecules24102002 31137754
    [Google Scholar]
  18. Lagarde N. Goldwaser E. Pencheva T. Jereva D. Pajeva I. Rey J. Tuffery P. Villoutreix B.O. Miteva M.A. A free web-based protocol to assist structure-based virtual screening experiments. Int. J. Mol. Sci. 2019 20 18 4648 10.3390/ijms20184648 31546814
    [Google Scholar]
  19. Bakchi B. Krishna A.D. Sreecharan E. Ganesh V.B.J. Niharika M. Maharshi S. Puttagunta S.B. Sigalapalli D.K. Bhandare R.R. Shaik A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022 1259 132712 10.1016/j.molstruc.2022.132712
    [Google Scholar]
  20. Egan W.J. Merz K.M. Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000 43 21 3867 3877 10.1021/jm000292e 11052792
    [Google Scholar]
  21. Tripathi P. Ghosh S. Talapatra S.N. Bioavailability prediction of phytochemicals present in Calotropis procera (Aiton) R. Br. by using Swiss-ADME tool. World Sci. News 2019 131 147 163
    [Google Scholar]
  22. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  23. Deb P.K. Mailavaram R. Chandrasekaran B. Kaki V.R. Kaur R. Kachler S. Klotz K.N. Akkinepally R.R. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3‐ d]pyrimidine derivatives. Chem. Biol. Drug Des. 2018 91 4 962 969 10.1111/cbdd.13155 29194979
    [Google Scholar]
  24. Fadaly W.A.A. Mohamed F.E.A. Nemr M.T.M. Sayed A.M. Khalil R.G. Zidan T.H. Novel benzenesulfonamide derivatives as potential selective carbonic anhydrase IX, XII inhibitors with anti-proliferative activity: Design, synthesis and in silico studies. Bioorg. Chem. 2024 153 107881 10.1016/j.bioorg.2024.107881 39396453
    [Google Scholar]
  25. Sahayarayan J.J. Rajan K.S. Vidhyavathi R. Nachiappan M. Prabhu D. Alfarraj S. Arokiyaraj S. Daniel A.N. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J. Biol. Sci. 2021 28 1 400 407 10.1016/j.sjbs.2020.10.023 33424323
    [Google Scholar]
  26. Metwally N.H. El-Desoky E.A. Novel thiopyrano [2, 3-d] thiazole-pyrazole hybrids as potential nonsulfonamide human carbonic anhydrase IX and XII inhibitors: Design, synthesis, and biochemical studies. ACS Omega 2023 8 6 5571 5592 10.1021/acsomega.2c06954 36816682
    [Google Scholar]
  27. Almatary A.M. Husseiny W.M.E. Selim K.B. Eisa H.M.H. Nitroimidazole-sulfonamides as carbonic anhydrase IX and XII inhibitors targeting tumor hypoxia: Design, synthesis, molecular docking and molecular dynamics simulation. J. Mol. Struct. 2022 1264 133260 10.1016/j.molstruc.2022.133260
    [Google Scholar]
  28. Alhakamy N.A. Saquib M. Sanobar; Khan, M.F.; Ansari, W.A.; Arif, D.O.; Irfan, M.; Khan, M.I.; Hussain, M.K. Natural product-inspired synthesis of coumarin–chalcone hybrids as potential anti-breast cancer agents. Front. Pharmacol. 2023 14 1231450 10.3389/fphar.2023.1231450 37745072
    [Google Scholar]
  29. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  30. Testa B. Crivori P. Reist M. Carrupt P.A. The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspect. Drug Discov. Des. 2000 19 1 179 211 10.1023/A:1008741731244
    [Google Scholar]
  31. Arnott J.A. Planey S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012 7 10 863 875 10.1517/17460441.2012.714363 22992175
    [Google Scholar]
  32. Sangster J.M. Octanol-water partition coefficients: Fundamentals and physical chemistry. Hoboken, New Jersey Wiley Online Library 1997
    [Google Scholar]
  33. Avdeef A. pH-metric log P. II: Refinement of partition coefficients and ionization constants of multiprotic substances. J. Pharm. Sci. 1993 82 2 183 190 10.1002/jps.2600820214 8445533
    [Google Scholar]
  34. Scherrer R.A. Donovan S.F. Automated potentiometric titrations in KCl/water-saturated octanol: Method for quantifying factors influencing ion-pair partitioning. Anal. Chem. 2009 81 7 2768 2778 10.1021/ac802729k 19265385
    [Google Scholar]
  35. Cheng T. Zhao Y. Li X. Lin F. Xu Y. Zhang X. Li Y. Wang R. Lai L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007 47 6 2140 2148 10.1021/ci700257y 17985865
    [Google Scholar]
  36. Wildman S.A. Crippen G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 1999 39 5 868 873 10.1021/ci990307l
    [Google Scholar]
  37. Moriguchi I. Hirono S. Nakagome I. Hirano H. Comparison of reliability of log P values for drugs calculated by several methods. Chem. Pharm. Bull. 1994 42 4 976 978 10.1248/cpb.42.976
    [Google Scholar]
  38. Savjani K.T. Gajjar A.K. Savjani J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012 2012 1 195727 22830056
    [Google Scholar]
  39. Yalkowsky S.H. Valvani S.C. Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 1980 69 8 912 922 10.1002/jps.2600690814 7400936
    [Google Scholar]
  40. Di L. Artursson P. Avdeef A. Ecker G.F. Faller B. Fischer H. Houston J.B. Kansy M. Kerns E.H. Krämer S.D. Lennernäs H. Sugano K. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov. Today 2012 17 15-16 905 912 10.1016/j.drudis.2012.03.015 22507594
    [Google Scholar]
  41. Brito-Sánchez Y. Marrero-Ponce Y. Barigye S.J. Yaber-Goenaga I. Morell Pérez C. Le-Thi-Thu H. Cherkasov A. Towards better BBB passage prediction using an extensive and curated data set. Mol. Inform. 2015 34 5 308 330 10.1002/minf.201400118 27490276
    [Google Scholar]
  42. Montanari F. Ecker G.F. Prediction of drug–ABC-transporter interaction — Recent advances and future challenges. Adv. Drug Deliv. Rev. 2015 86 17 26 10.1016/j.addr.2015.03.001 25769815
    [Google Scholar]
  43. Ogu C.C. Maxa J.L. Drug interactions due to cytochrome. Bay-lor University medical center proceedings 2000 450
    [Google Scholar]
  44. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  45. Ghose A.K. Viswanadhan V.N. Wendoloski J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J. Phys. Chem. A 1998 102 21 3762 3772 10.1021/jp980230o
    [Google Scholar]
  46. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  47. Muegge I. Heald S.L. Brittelli D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001 44 12 1841 1846 10.1021/jm015507e 11384230
    [Google Scholar]
  48. Martin Y.C. A bioavailability score. J. Med. Chem. 2005 48 9 3164 3170 10.1021/jm0492002 15857122
    [Google Scholar]
  49. Baell J.B. Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010 53 7 2719 2740 10.1021/jm901137j 20131845
    [Google Scholar]
  50. Brenk R. Schipani A. James D. Krasowski A. Gilbert I.H. Frearson J. Wyatt P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008 3 3 435 444 10.1002/cmdc.200700139 18064617
    [Google Scholar]
  51. Teague S.J. Davis A.M. Leeson P.D. Oprea T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. 1999 38 24 3743 3748 10.1002/(SICI)1521‑3773(19991216)38:24<3743:AID‑ANIE3743>3.0.CO;2‑U 10649345
    [Google Scholar]
  52. Ertl P. Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 2009 1 1 8 10.1186/1758‑2946‑1‑8 20298526
    [Google Scholar]
  53. Banerjee P. Kemmler E. Dunkel M. Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 52 W1 W513 W520 10.1093/nar/gkae303 38647086
    [Google Scholar]
  54. Han R. Li J. Hony J. Xiao Z. wang, J.; Yao, M.; Liang, S.; Lu, L. CAXII inhibitors: Potential sensitizers for immune checkpoint inhibitors in HCC treatment. Front. Immunol. 2023 14 1052657 10.3389/fimmu.2023.1052657 37006233
    [Google Scholar]
  55. Wang B. Zhao Q. Zhang Y. Liu Z. Zheng Z. Liu S. Meng L. Xin Y. Jiang X. Targeting hypoxia in the tumor microenvironment: A potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 2021 40 1 24 10.1186/s13046‑020‑01820‑7 33422072
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096410336250918141943
Loading
/content/journals/ccdt/10.2174/0115680096410336250918141943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test