Skip to content
2000
image of Overexpression of HNF4G can Increase the Resistance of Ovarian Cancer Cells to Olaparib

Abstract

Introduction

Ovarian cancer (OV) is one of the most malignant gynecological cancers. Poly(ADP-ribose) polymerase inhibitors (PARPi) represent the first-line maintenance therapy, effectively prolonging patient survival; however, the development of PARPi resistance poses a significant challenge for OV maintenance therapy. Previous studies have indicated that HNF4G functions as an oncogene in various tumors, but its role in OV development and Olaparib resistance remains unexplored.

Methods

We established an Olaparib-resistant OV cell line, SKOV3-PARPi, from the parental SKOV3 cell line. The impact of HNF4G on SKOV3 cell resistance to Olaparib was investigated using qRT-PCR, CCK-8 assay, Transwell assay, colony formation assay, scratch assay, Western blot, flow cytometry, as well as a nude mouse xenograft tumor model and immunohistochemistry. The function of HNF4G in SKOV3-Olaparib resistant cells was elucidated and subsequently validated through the animal tumor model.

Results

Prolonged Olaparib exposure induced acquired resistance in SKOV3 cells. Compared to parental OV cells, HNF4G expression was upregulated in Olaparib-resistant cells. Overexpression of HNF4G enhanced Olaparib resistance in OV cells, whereas HNF4G knockdown diminished it. Furthermore, increased protein levels of components within the PI3K-AKT signaling pathway were observed in Olaparib-resistant cells. Knocking down HNF4G expression in resistant cells significantly slowed tumor growth under Olaparib treatment. Changes in the protein levels of HNF4G and PI3K-AKT pathway components in the in vivo xenograft tumor tissues were consistent with the cellular observations.

Conclusion

Overexpression of HNF4G plays a crucial role in conferring Olaparib resistance in OV by activating the PI3K-AKT signaling pathway. HNF4G may serve as a potential therapeutic target for patients with Olaparib-resistant OV.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096410121250926110350
2025-10-17
2025-11-08
Loading full text...

Full text loading...

References

  1. Perrone M.G. Filieri S. Azzariti A. Armenise D. Baldelli O.M. Liturri A. Sardanelli A.M. Ferorelli S. Miciaccia M. Scilimati A. Exosomes in ovarian cancer: Towards precision oncology. Pharmaceuticals 2025 18 3 371 10.3390/ph18030371 40143147
    [Google Scholar]
  2. Torre L.A. Trabert B. DeSantis C.E. Miller K.D. Samimi G. Runowicz C.D. Gaudet M.M. Jemal A. Siegel, RL Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018 68 4 284 296 10.3322/caac.21456 29809280
    [Google Scholar]
  3. Bi R. Chen L. Huang M. Qiao Z. Li Z. Fan G. Wang Y. Emerging strategies to overcome PARP inhibitors’ resistance in ovarian cancer. Biochim. Biophys. Acta Rev. Cancer 2024 1879 6 189221 10.1016/j.bbcan.2024.189221 39571765
    [Google Scholar]
  4. Poveda A. Floquet A. Ledermann J.A. Asher R. Penson R.T. Oza A.M. Korach J. Huzarski T. Pignata S. Friedlander M. Baldoni A. Park-Simon T.W. Tamura K. Sonke G.S. Lisyanskaya A. Kim J.H. Filho E.A. Milenkova T. Lowe E.S. Rowe P. Vergote I. Pujade-Lauraine E. Korach J. Huzarski T. Byrski T. Pautier P. Friedlander M. Harter P. Colombo N. Pignata S. Scambia G. Nicoletto M. Nussey F. Clamp A. Penson R. Oza A. Poveda Velasco A. Rodrigues M. Lotz J-P. Selle F. Ray-Coquard I. Provencher D. Prat Aparicio A. Vidal Boixader L. Scott C. Tamura K. Yunokawa M. Lisyanskaya A. Medioni J. Pécuchet N. Dubot C. De La Motte Rouge T. Kaminsky M-C. Weber B. Lortholary A. Parkinson C. Ledermann J. Williams S. Banerjee S. Cosin J. Hoffman J. Penson R. Plante M. Covens A. Sonke G. Joly F. Floquet A. Banerjee S. Hirte H. Amit A. Park-Simon T-W. Matsumoto K. Tjulandin S. Hoon Kim J. Gladieff L. Sabbatini R. O’Malley D. Timmins P. Kredentser D. Laínez Milagro N. Barretina Ginesta M.P. Tibau Martorell A. Gómez De Liaño Lista A. Ojeda González B. Mileshkin L. Mandai M. Boere I. Ottevanger P. Nam J-H. Filho E. Hamizi S. Cognetti F. Warshal D. Dickson-Michelson E. Kamelle S. McKenzie N. Rodriguez G. Armstrong D. Chalas E. Celano P. Behbakht K. Davidson S. Welch S. Helpman L. Fishman A. Bruchim I. Sikorska M. Olaparib tablets as maintenance therapy in pa-tients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2021 22 5 620 631.SOLO2/ENGOT-Ov21 investigators 10.1016/S1470‑2045(21)00073‑5 33743851
    [Google Scholar]
  5. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  6. Zhan J. Zhang Q. Tong X. Liu X. Zhao C. HNF4G stimulates the development of pancreatic cancer by promoting IGF2BP2 transcription. Clin. Transl. Oncol. 2023 25 5 1472 1481 10.1007/s12094‑022‑03048‑7 36607591
    [Google Scholar]
  7. Chen L. Shi H. Wang X. Wang T. Wang Y. Wu Z. Zhang W. Chen H. Zhong M. Mao X. Shi X. Li Q. Hepatocyte nuclear factor 4 gamma (HNF4G) is correlated with poor prognosis and promotes tumor cell growth by inhibiting caspase-dependent intrinsic apoptosis in colorectal cancer. Eur. J. Pharmacol. 2022 916 174727 10.1016/j.ejphar.2021.174727 34965388
    [Google Scholar]
  8. Xu K. Chen B. Li B. Li C. Zhang Y. Jiang N. Lang B. DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer. Aging (Albany NY) 2020 12 23 23668 23683 10.18632/aging.103820 33221743
    [Google Scholar]
  9. Wu R. Li N. Huang W. Yang Y. Zang R. Song H. Shi J. Zhu S. Liu Q. Melittin suppresses ovarian cancer growth by regulating SREBP1-mediated lipid metabolism. Phytomedicine 2025 137 156367 10.1016/j.phymed.2025.156367 39798341
    [Google Scholar]
  10. He S. Ma L. Baek A.E. Vardanyan A. Vembar V. Chen J.J. Nelson A.T. Burdette J.E. Nelson E.R. Host CYP27A1 expression is essential for ovarian cancer progression. Endocr. Relat. Cancer 2019 26 7 659 675 10.1530/ERC‑18‑0572 31048561
    [Google Scholar]
  11. Xin B. Yokoyama Y. Shigeto T. Futagami M. Mizunuma H. Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer 2007 110 4 791 800 10.1002/cncr.22854 17582802
    [Google Scholar]
  12. He Y. de Araújo Júnior R.F. Cavalcante R.S. Yu Z. Schomann T. Gu Z. Eich C. Cruz L.J. Effective breast cancer therapy based on palmitic acid-loaded PLGA nanoparticles. Biomater Adv. 2023 145 213270 10.1016/j.bioadv.2022.213270 36603405
    [Google Scholar]
  13. Luo W. Li Y. Li G. Yang M. RING box protein-1 promotes the metastasis of cervical cancer through regulating matrix metalloproteinasesvia PI3K/AKT signaling pathway. J. Mol. Histol. 2025 56 2 120 10.1007/s10735‑025‑10396‑5 40153066
    [Google Scholar]
  14. Liu L. Cai Q. Wu D. Li S. Liu D. Zheng J. AEBP1 inhibition reduces cell growth and PI3K/AKT pathway while less regulates cell mobility in hepatocellular carcinoma. World J. Surg. Oncol. 2025 23 1 108 10.1186/s12957‑025‑03750‑0 40158165
    [Google Scholar]
  15. Mirza M.R. Coleman R.L. González-Martín A. Moore K.N. Colombo N. Ray-Coquard I. Pignata S. The forefront of ovarian cancer therapy: Update on PARP inhibitors. Ann. Oncol. 2020 31 9 1148 1159 10.1016/j.annonc.2020.06.004 32569725
    [Google Scholar]
  16. Stubbs N.M. Roady T.S. Schwermann M.P. Eteshola E.O. MacDonald W.J. Purcell C. Ryspayeva D. Verovkina N. Tajiknia V. Ghandali M. Voong V. Lannigan A.J. Raufi A.G. Lawler S. Holder S.L. Carneiro B.A. Cheng L. Safran H.P. Graff S.L. Dizon D.S. Mani S.A. Seyhan A.A. Sobol R.W. Wong E.T. Chen C.C. Gokaslan Z. Taylor M.S. Rivers B.M. El-Deiry W.S. Acquired resistance to molecularly targeted therapies for cancer. Cancer Drug Resist. 2025 8 27 10.20517/cdr.2024.189 40510029
    [Google Scholar]
  17. Jain A. Barge A. Parris C.N. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: Overcoming resistance mechanisms. Oncogene 2025 44 4 193 207 10.1038/s41388‑024‑03227‑6 39572842
    [Google Scholar]
  18. Hong M.K. Ding D.C. Early diagnosis of ovarian cancer: A comprehensive review of the advances, challenges, and future directions. Diagnostics 2025 15 4 406 10.3390/diagnostics15040406 40002556
    [Google Scholar]
  19. Ovarian cancer statistics and survival rates. 2025 Available from: https://ocrahope.org/for-patients/gynecologic-cancers/ovarian-cancer/ovarian-cancer-statistics/
  20. Amaral M.V.S. De Sousa Portilho A.J. Da Silva E.L. De Oliveira Sales L. Da Silva Maués J.H. De Moraes M.E.A. Moreira-Nunes C.A. Establishment of drug-resistant cell lines as a model in experimental oncology: A review. Anticancer Res. 2019 39 12 6443 6455 10.21873/anticanres.13858 31810908
    [Google Scholar]
  21. Li L.C. Wang J.D. Yang S.S. Zhou Z. Zeng Q.F. Zheng F. Establishment of drug-resistant cell lines of acute myeloid leukemia and correlation of sirt1 and pgc-1α expression levels with drug resistance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2022 30 3 704 710 10.19746/j.cnki.issn.1009‑2137.2022.03.007 35680793
    [Google Scholar]
  22. Grigoreva T. Sagaidak A. Romanova A. Novikova D. Garabadzhiu A. Tribulovich V. Establishment of drug-resistant cell lines under the treatment with chemicals acting through different mechanisms. Chem. Biol. Interact. 2021 344 109510 10.1016/j.cbi.2021.109510 33974899
    [Google Scholar]
  23. Liu H. Hamaia S.W. Dobson L. Weng J. Hernández F.L. Beaudoin C.A. Salvage S.C. Huang C.L.H. Machesky L.M. Jackson A.P. The voltage-gated sodium channel β3 subunit modulates C6 glioma cell motility independently of channel activity. Biochim. Biophys. Acta Mol. Basis Dis. 2025 1871 6 167844 10.1016/j.bbadis.2025.167844 40245999
    [Google Scholar]
  24. Li R. Huang Y. Liu H. Dilger J.P. Lin J. Comparing volatile and intravenous anesthetics in a mouse model of breast cancer metastasis. Cancer Res. 2018 78 13 2162 10.1158/1538‑7445.AM2018‑2162
    [Google Scholar]
  25. Turner P.V. Brabb T. Pekow C. Vasbinder M.A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 2011 50 5 600 613 22330705
    [Google Scholar]
  26. Gad S.C. Spainhour C.B. Shoemake C. Pallman D.R.S. Stricker-Krongrad A. Downing P.A. Seals R.E. Eagle L.A. Polhamus K. Daly J. Tolerable levels of nonclinical vehicles and formulations used in studies by multiple routes in multiple species with notes on methods to improve utility. Int. J. Toxicol. 2016 35 2 95 178 10.1177/1091581815622442 26755718
    [Google Scholar]
  27. Nair A. Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016 7 2 27 31 10.4103/0976‑0105.177703 27057123
    [Google Scholar]
  28. Li P. Zhao L. Developing early formulations: Practice and perspective. Int. J. Pharm. 2007 341 1-2 1 19 10.1016/j.ijpharm.2007.05.049 17658228
    [Google Scholar]
  29. Liu B. Deng W.Z. Hu W.H. Lu R.X. Zhang Q.Y. Gao C.F. Huang X.J. Liao W.G. Gao J. Liu Y. Kurihara H. Li Y.F. Zhang X.H. Wu Y.P. Liang L. He R.R. Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis. Acta Pharm. Sin. B 2025 15 6 3149 3162 10.1016/j.apsb.2025.04.001 40654365
    [Google Scholar]
  30. Wu P. Jiang Q. Han L. Liu X. Systematic analysis and prediction for disease burden of ovarian cancer attributable to hyperglycemia: A comparative study between China and the world from 1990 to 2019. Front. Med. 2023 10 1145487 10.3389/fmed.2023.1145487 37122334
    [Google Scholar]
  31. Caruso G. Weroha S.J. Cliby W. Ovarian cancer: A review. JAMA 2025 10.1001/jama.2025.9495 40690248
    [Google Scholar]
  32. Baradács I. Teutsch B. Vincze Á. Hegyi P. Szabó B. Nyirády P. Ács N. Melczer Z. Bánhidy F. Lintner B. Efficacy and safety of combination therapy with parp inhibitors and anti-angiogenic agents in ovarian cancer: a systematic review and meta-analysis. J. Clin. Med. 2025 14 5 1776 10.3390/jcm14051776 40095926
    [Google Scholar]
  33. Ma H. Qi G. Han F. Peng J. Yuan C. Kong B. PBK drives PARP inhibitor resistance through the TRIM37/NFκB axis in ovarian cancer. Exp. Mol. Med. 2022 54 7 999 1010 10.1038/s12276‑022‑00809‑w 35859118
    [Google Scholar]
  34. Cheng A. Rao Q. Liu Y. Huang C. Li J. Huo C. Lin Z. Lu H. Genomic and expressional dynamics of ovarian cancer cell lines in PARPi treatment revealed mechanisms of acquired resistance. Gynecol. Oncol. 2022 167 3 502 512 10.1016/j.ygyno.2022.10.011 36270832
    [Google Scholar]
  35. Mukherjee U.A. Miller R.E. Ledermann J.A. Controversies and clinical unknowns in the use of PARP inhibitors in ovarian cancer. Ther. Adv. Med. Oncol. 2025 17 17588359251343973 10.1177/17588359251343973 40529205
    [Google Scholar]
  36. Kulkarni S. Seneviratne N. Tosun Ç. Madhusudan S. PARP inhibitors in ovarian cancer: Mechanisms of resistance and implications to therapy. DNA Repair 2025 149 103830 10.1016/j.dnarep.2025.103830 40203475
    [Google Scholar]
  37. Wang G. Yang H. Wang Y. Qin J. Ovarian cancer targeted therapy: current landscape and future challenges. Front. Oncol. 2025 15 1535235 10.3389/fonc.2025.1535235 40395324
    [Google Scholar]
  38. Heppert J.K. Lickwar C.R. Tillman M.C. Davis B.R. Davison J.M. Lu H.Y. Chen W. Busch-Nentwich E.M. Corcoran D.L. Rawls J.F. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022 222 4 iyac133 10.1093/genetics/iyac133 36218393
    [Google Scholar]
  39. Shukla S. Li D. Cho W.H. Schoeps D.M. Nguyen H.M. Conner J.L. Roskes M.L. Tehim A. Bayshtok G. Pachai M.R. Yan J. Teri N.A. Campeau E. Attwell S. Trojer P. Ostrovnaya I. Gopalan A. Khurana E. Corey E. Chi P. Chen Y. BET inhibitors reduce tumor growth in preclinical models of gastrointestinal gene signature-positive castration-resistant prostate cancer. J. Clin. Invest. 2025 135 16 e180378 10.1172/JCI180378 40553565
    [Google Scholar]
  40. Ma Y.S. Shi B.W. Guo J.H. Liu J.B. Yang X.L. Xin R. Shi Y. Zhang D.D. Lu G.X. Jia C.Y. Wang H.M. Wang P.Y. Yang H.Q. Zhang J.J. Wu W. Cao P.S. Yin Y.Z. Gu L.P. Tian L.L. Lv Z.W. Wu C.Y. Wang G.R. Yu F. Hou L.K. Jiang G.X. Fu D. MicroRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis 2021 42 5 762 771 10.1093/carcin/bgab023 33758932
    [Google Scholar]
  41. Che H. Zheng Q. Liao Z. Zhang L. HNF4G accelerates glioma progression by facilitating NRP1 transcription. Oncol. Lett. 2023 25 3 102 10.3892/ol.2023.13688 36817051
    [Google Scholar]
  42. Liang J. Zhao G. Bian Y. Bi G. Sui Q. Zhang H. Shi H. Shan G. Huang Y. Chen Z. Wang L. Zhan C. HNF4G increases cisplatin resistance in lung adenocarcinoma via the MAPK6/Akt pathway. PeerJ 2023 11 e14996 10.7717/peerj.14996 36923501
    [Google Scholar]
  43. Hu W. Li M. Chen Y. Gu X. UBE2S promotes the progression and Olaparib resistance of ovarian cancer through Wnt/β-catenin signaling pathway. J. Ovarian Res. 2021 14 1 121 10.1186/s13048‑021‑00877‑y 34535173
    [Google Scholar]
  44. Croft W. Pounds R. Jeevan D. Singh K. Balega J. Sundar S. Williams A. Ganesan R. Kehoe S. Ott S. Zuo J. Yap J. Moss P. The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory drivers in post-chemotherapy residual tumour cells. Commun. Biol. 2024 7 1 1211 10.1038/s42003‑024‑06909‑9 39341888
    [Google Scholar]
  45. Dahlman I. Mejhert N. Linder K. Agustsson T. Mutch D.M. Kulyte A. Isaksson B. Permert J. Petrovic N. Nedergaard J. Sjölin E. Brodin D. Clement K. Dahlman-Wright K. Rydén M. Arner P. Adipose tissue pathways involved in weight loss of cancer cachexia. Br. J. Cancer 2010 102 10 1541 1548 10.1038/sj.bjc.6605665 20407445
    [Google Scholar]
  46. Ayari S. Gil-Iturbe E. le Gléau L. Osinski C. Kapel N. Soula H.A. Leturque A. Andreelli F. Clément K. Serradas P. Ribeiro A. Hnf4g invalidation prevents diet-induced obesity via intestinal lipid malabsorption. J. Endocrinol. 2022 252 1 31 44 10.1530/JOE‑21‑0092 34647524
    [Google Scholar]
  47. Grunt T.W. Slany A. Semkova M. Colomer R. López-Rodríguez M.L. Wuczkowski M. Wagner R. Gerner C. Stübiger G. Membrane disruption, but not metabolic rewiring, is the key mechanism of anticancer-action of FASN-inhibitors: A multi-omics analysis in ovarian cancer. Sci. Rep. 2020 10 1 14877 10.1038/s41598‑020‑71491‑z 32913236
    [Google Scholar]
  48. Zhao G. Cardenas H. Matei D. Ovarian cancer—why lipids matter. Cancers 2019 11 12 1870 10.3390/cancers11121870 31769430
    [Google Scholar]
  49. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  50. Wang N.Z. Zhang L. Chen J. Chen H. Wang R.C. Lu C.H. Ji, YF Expression of SIPA1 in colorectal cancer and its impact on its biological behavior. Zhonghua Zhong Liu Za Zhi 2025 47 7 657 668 10.3760/cma.j.cn112152‑20240812‑00338 40692252
    [Google Scholar]
  51. Zhang R. Li T.Y. Liu J.X. Liu R.R. Huang X.C. Mo Q. Lei G.W. Jia C.S. Pan L.J. Wheat-grain moxibustion combined with chemotherapy inhibits tumor growth by suppressing PI3K/AKT/mTOR signaling pathway in breast cancer mice. Zhen Ci Yan Jiu 2025 50 7 790 798 10.13702/j.1000‑0607.20240438 40691029
    [Google Scholar]
  52. Santos Fortes dos Reis V.M. Ramos F.M. de Oliveira H.L. Machado F.D. Hartke S. Machado-Weber A. Germeyer A. Strowitzki T. Kliemann L.M. von Eye Corleta H. Brum I.S. Capp E. Meira Martins L.A. Effects of metformin treatment against endometrial cancer cells cultured in vitro or grafted into female Balb/C nude mice: Insights into cell response and IGF-1R and PI3K/AKT/mTOR signaling pathways. Cell Biochem. Biophys. 2025 10.1007/s12013‑025‑01840‑0 40690138
    [Google Scholar]
  53. Cai S. Zhang L. Liu T. Wang B. Yan S. Wang S. Yu J. Wu S. Lin S. Zhao W. Theaflavin inhibits the malignant phenotype of human anaplastic thyroid cancer 8305C cells by regulating lipid metabolism via PI3K/AKT signaling. Transl. Cancer Res. 2025 14 6 3758 3771 10.21037/tcr‑2025‑920 40687259
    [Google Scholar]
  54. Chen Y. Qi Y. Jiang Y. Li Y. Yang S. Wang L. Li M. Chai K. Wang Y. Icariin modulates the tumor microenvironment in colorectal cancer by targeting M2 macrophage polarization via PI3K/AKT pathway. Bioorg. Med. Chem. 2025 129 118317 10.1016/j.bmc.2025.118317 40683071
    [Google Scholar]
  55. Li X. Li X. Wang J. Xue M. Zhang M. Shuai J. Zhang J. Ding D. Wang Y. Hou S. Chi X. Sun H. Gao Q. Kang C. Zinc finger protein 695 facilitates the proliferation of colorectal cancer cells through activation of the NEK2 and PI3K/Akt/mTOR signaling pathways. Oncol. Rep. 2025 54 4 1 13 10.3892/or.2025.8949 40682845
    [Google Scholar]
  56. Zheng K. Jin G. Cao R. Gao Y. Xu J. Chai R. Kang Y. Targeting on the PI3K/mTOR: A potential treatment strategy for clear cell ovarian carcinoma. Cancer Chemother. Pharmacol. 2025 95 1 21 10.1007/s00280‑024‑04748‑3 39792198
    [Google Scholar]
  57. Ren R. Zhang S. Peng Z. Ji X. Song H. Wang Q. Sun X. Wang H. Dong Y. Matrix stiffness regulates glucose-6-phosphate dehydrogenase expression to mediate sorafenib resistance in hepatocellular carcinoma through the ITGB1-PI3K/AKT pathway. Cell Death Dis. 2025 16 1 538 10.1038/s41419‑025‑07842‑3 40685383
    [Google Scholar]
  58. Li R. Wu H. Ran F. He Y. Sun H. Peng W. Wang Q. Li J. GDF15 activates the PI3K/AKT pathway to mediate macrophage M2 polarization to promote prostate cancer resistance to docetaxel. Mol. Immunol. 2025 185 27 38 10.1016/j.molimm.2025.07.006 40674958
    [Google Scholar]
  59. Agrawal M. Agrawal S.K. Chopra K. Overcoming drug resistance in ovarian cancer through PI3K/AKT signaling inhibitors. Gene 2025 948 149352 10.1016/j.gene.2025.149352 39988188
    [Google Scholar]
  60. Xie S. Su Y. Zhang J. Yin F. Liu X. Upregulation of miRNA-450b-5p targets ACTB to affect drug resistance and prognosis of ovarian cancer via the PI3K/Akt signaling pathway. Transl. Cancer Res. 2024 13 9 4800 4812 10.21037/tcr‑24‑292 39430863
    [Google Scholar]
  61. López-Garza A. James D. Creagh E. Murray J.T. Targeting of PTP4A3 overexpression sensitises HGSOC cells towards chemotherapeutic drugs. Mol. Oncol. 2025 1878-0261.70092 10.1002/1878‑0261.70092 40657934
    [Google Scholar]
  62. Jahangiri L. Updates on liquid biopsies in neuroblastoma for treatment response, relapse and recurrence assessment. Cancer Genet. 2024 288-289 32 39 10.1016/j.cancergen.2024.09.001 39241395
    [Google Scholar]
  63. Gristina V. Pepe F. Ogliari F.R. Bazan Russo T.D. Gottardo A. Russo G. Incorvaia L. Guerry J.A. Pisapia P. Scimone C. Palumbo L. Galvano A. Badalamenti G. Bazan V. Troncone G. Russo A. Malapelle U. Smaller, cheaper, faster: Where next for liquid biopsies? Expert Rev. Mol. Diagn. 2025 1 19 10.1080/14737159.2025.2534961 40657811
    [Google Scholar]
  64. Chen W.Q. Chen K.X. He Y.T. Jia W.H. Liu Z.H. Ma H.X. Miao X.P. Pan K.F. Wu C. Xia C.F. Xing J.L. Xu Y.J. Expert consensus on liquid biopsy-based multi-cancer early detection. Zhonghua Zhong Liu Za Zhi 2025 47 7 558 574 10.3760/cma.j.cn112152‑20250605‑00257 40692248
    [Google Scholar]
  65. Han Y. Zhang P. Gong Y. Song L. Development and clinical applications of liquid biopsy assays in cancer screening. Transl. Cancer Res. 2025 14 6 3846 3859 10.21037/tcr‑2025‑272 40687260
    [Google Scholar]
  66. Cheng B. Luo T. Wu Y. Hu J. Yang C. Wu J. Luo Y. Shangguan W. Li W. Yang L. Huang W. Ma C. Li Z. Sun B. Wang Q. Xu K. Wu P. Huang H. Urinary exosomal FAM153C-RPL19 chimeric RNA as a diagnostic and prognostic biomarker for prostate cancer in Chinese patients. Cancer Lett. 2025 631 217938 10.1016/j.canlet.2025.217938 40684841
    [Google Scholar]
  67. Hsu C.Y. Jasim S.A. Jyothi R.S. Ahmad I. Hjazi A. Alubiady M.H.S. Sinha A. Mustafa Y.F. Al-Ani A.M. Hussn A. Unlocking the role of tRNA-derived fragments in shaping breast cancer signaling. Naunyn Schmiedebergs Arch. Pharmacol. 2025 1 21 10.1007/s00210‑025‑04407‑1 40690013
    [Google Scholar]
  68. Wu J. Xu X. Zhang Q. Li P. Wu T. Guo S. Du L. Xue D. Shen S. Sun F. Hu J. Zheng L. Wu X. Bai J. Wang Y. Wu L. Liu W. Wang H. Jin G. Chen L. Cell-free DNA testing for the detection and prognosis prediction of pancreatic cancer. Nat. Commun. 2025 16 1 6645 10.1038/s41467‑025‑61890‑z 40681511
    [Google Scholar]
  69. Wang Y. Fujiwara T. Kurozumi T. Ando T. Ishimaru T. Kondo H. Nakata E. Kunisada T. Ozaki T. Advances in liquid biopsy for bone and soft-tissue sarcomas. Int. J. Clin. Oncol. 2025 1 12 10.1007/s10147‑025‑02813‑2 40679665
    [Google Scholar]
  70. Kumari P. Aiyar A. Dang S. Liquid biopsy-based smart sensors for ovarian cancer detection. Crit. Rev. Anal. Chem. 2025 1 16 10.1080/10408347.2025.2530177 40668664
    [Google Scholar]
  71. Feng Y. Yang W. Zhu J. Wang S. Wu N. Zhao H. Yang X. Clinical utility of various liquid biopsy samples for the early detection of ovarian cancer: A comprehensive review. Front. Oncol. 2025 15 1594100 10.3389/fonc.2025.1594100 40666090
    [Google Scholar]
  72. Wang F. Wang L. Xing Z. Lu L. Lin Z. Qian S. Zhu T. Shao Z. Zhao L. Dong J. Qian F. Li Y. Chen X. Yang S. Cheng X. Multi-analyte approach combining cfDNA sequencing and protein testing for early ovarian cancer detection. iScience 2025 28 6 112617 10.1016/j.isci.2025.112617 40502685
    [Google Scholar]
  73. Martinelli C. Ercoli A. Vizzielli G. Burk S.R. Cuomo M. Satasiya V. Kacem H. Braccia S. Mazzarotti G. Miriello I. Tchamou M.N. Restaino S. Arcieri M. Poli A. Tius V. Parisi S. Pergolizzi S. Iatì G. Nibali C.C. Pizzimenti C. Pepe L. Ieni A. Cortellino S. Giordano A. Liquid biopsy in gynecological cancers: a translational framework from molecular insights to precision oncology and clinical practice. J. Exp. Clin. Cancer Res. 2025 44 1 140 10.1186/s13046‑025‑03371‑1 40340939
    [Google Scholar]
  74. Sharma R. Yadav J. Bhat S.A. Musayev A. Myrzagulova S. Sharma D. Padha N. Saini M. Tuli H.S. Singh T. Emerging trends in neuroblastoma diagnosis, therapeutics, and research. Mol. Neurobiol. 2025 62 5 6423 6466 10.1007/s12035‑024‑04680‑w 39804528
    [Google Scholar]
  75. Henley M.J. Koehler A.N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 2021 20 9 669 688 10.1038/s41573‑021‑00199‑0 34006959
    [Google Scholar]
  76. Zhuang J. Liu Q. Wu D. Tie L. Current strategies and progress for targeting the “undruggable” transcription factors. Acta Pharmacol. Sin. 2022 43 10 2474 2481 10.1038/s41401‑021‑00852‑9 35132191
    [Google Scholar]
  77. Manju C.A. Jeena K. Ramachandran R. Manohar M. Ambily A.M. Sajesh K.M. Gowd G.S. Menon K. Pavithran K. Pillai A. Nair S.V. Koyakutty M. Intracranially injectable multi-siRNA nanomedicine for the inhibition of glioma stem cells. Neurooncol. Adv. 2021 3 1 vdab104 10.1093/noajnl/vdab104 34604750
    [Google Scholar]
  78. Kelly L.M. Rutter J.C. Lin K.H. Ling F. Duchmann M. Latour E. Arang N. Pasquer H. Ho Nhat D. Charles J. Killarney S.T. Ang H.X. Namor F. Culeux C. Lombard B. Loew D. Swaney D.L. Krogan N.J. Brunel L. Carretero É. Verdié P. Amblard M. Fodil S. Huynh T. Sebert M. Adès L. Raffoux E. Fenouille N. Itzykson R. Lobry C. Benajiba L. Forget A. Martin A.R. Wood K.C. Puissant A. Targeting a lineage-specific PI3Kɣ–Akt signaling module in acute myeloid leukemia using a heterobifunctional degrader molecule. Nat. Can. 2024 5 7 1082 1101 10.1038/s43018‑024‑00782‑5 38816660
    [Google Scholar]
  79. Tee W.V. Raechell; Guarnera, E.; Berezovsky, I.N. Sequence and Structure at Play in Designing Allosteric Drugs and Alleviating the Drug Resistance. J. Mol. Biol. 2025 169206 10.1016/j.jmb.2025.169206 40378916
    [Google Scholar]
  80. To J. Magid R. Cleland J. Panier V. Wu J. The landscape for radioligand therapies in oncology. Nat. Rev. Drug Discov. 2025 24 8 584 585 10.1038/d41573‑025‑00096‑w 40461633
    [Google Scholar]
  81. Ratz L. Baek S. Panier S. Revisiting genomic instability, tumor microenvironment and immune response in high-grade serous ovarian cancer. Geburtshilfe Frauenheilkd. 2025 85 7 694 709 10.1055/a‑2613‑0489 40599900
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096410121250926110350
Loading
/content/journals/ccdt/10.2174/0115680096410121250926110350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test