Skip to content
2000
image of Gut Microbiota: An Innovative Traditional Chinese Medicine Perspective on Breast Cancer Therapy

Abstract

Breast cancer (BC) represents a complex malignancy shaped by both genetic predisposition and environmental influences, with growing evidence implicating the gut microenvironment in its pathogenesis. While the therapeutic potential of gut-targeted interventions has gained attention, the precise molecular mechanisms remain poorly characterized. Traditional Chinese medicine (TCM) has emerged as a valuable therapeutic approach due to its widespread availability and demonstrated clinical efficacy, particularly through its capacity to modulate gut homeostasis and exert systemic effects across multiple disease states, including breast cancer. Specific TCM formulations, including CCM, CMM, and MBC, have shown significant potential to reshape gut microbial composition, influence microbial metabolite production, restore immune homeostasis, enhance short-chain fatty acid biosynthesis, regulate estrogen metabolism, and induce beneficial epigenetic modifications, thereby offering a multifaceted therapeutic strategy against breast cancer. This review systematically examines the pharmacological mechanisms, molecular targets, and clinical implications of TCM-based interventions in breast cancer management, highlighting their potential to open new avenues in oncological therapeutics.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096400579250924110355
2025-10-08
2025-11-07
Loading full text...

Full text loading...

References

  1. Katsura C. Ogunmwonyi I. Kankam H.K.N. Saha S. Breast cancer: Presentation, investigation and management. Br. J. Hosp. Med. 2022 83 2 1 7 10.12968/hmed.2021.0459
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660
    [Google Scholar]
  3. Loibl S. Poortmans P. Morrow M. Denkert C. Curigliano G. Breast cancer. Lancet 2021 397 10286 1750 1769 10.1016/S0140‑6736(20)32381‑3
    [Google Scholar]
  4. Rodríguez J.M. Fernández L. Verhasselt V. The gut‒breast axis: Programming health for life. Nutrients 2021 13 2 606 10.3390/nu13020606
    [Google Scholar]
  5. Marino M.M. Nastri B.M. D’Agostino M. Risolo R. De Angelis A. Settembre G. Rienzo M. D’Esposito V. Abbondanza C. Formisano P. Ballini A. Santacroce L. Boccellino M. Di Domenico M. Does gut-breast microbiota axis orchestrates cancer progression? Endocr. Metab. Immune Disord. Drug Targets 2022 22 11 1111 1122 10.2174/1871530322666220331145816
    [Google Scholar]
  6. Zhang H. Duan Y. Cai F. Cao D. Wang L. Qiao Z. Hong Q. Li N. Zheng Y. Su M. Liu Z. Zhu B. Next‐generation probiotics: microflora intervention to human diseases. BioMed Res. Int. 2022 2022 1 5633403 10.1155/2022/5633403
    [Google Scholar]
  7. Zhou B. Yuan Y. Zhang S. Guo C. Li X. Li G. Xiong W. Zeng Z. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front. Immunol. 2020 11 575 10.3389/fimmu.2020.00575
    [Google Scholar]
  8. Sampsell K. Hao D. Reimer R.A. The gut microbiota: A potential gateway to improved health outcomes in breast cancer treatment and survivorship. Int. J. Mol. Sci. 2020 21 23 9239 10.3390/ijms21239239
    [Google Scholar]
  9. He C. Liu Y. Ye S. Yin S. Gu J. Changes of intestinal microflora of breast cancer in premenopausal women. Eur. J. Clin. Microbiol. Infect. Dis. 2021 40 3 503 513 10.1007/s10096‑020‑04036‑x
    [Google Scholar]
  10. Akbarali H.I. Muchhala K.H. Jessup D.K. Cheatham S. Chemotherapy induced gastrointestinal toxicities. Adv. Cancer Res. 2022 155 131 166 10.1016/bs.acr.2022.02.007
    [Google Scholar]
  11. Sougiannis A.T. VanderVeen B.N. Davis J.M. Fan D. Murphy E.A. Understanding chemotherapy-induced intestinal mucositis and strategies to improve gut resilience. Am. J. Physiol. Gastrointest. Liver Physiol. 2021 320 5 G712 G719 10.1152/ajpgi.00380.2020
    [Google Scholar]
  12. Luan X. Zhang L.J. Li X.Q. Rahman K. Zhang H. Chen H.Z. Zhang W.D. Compound-based Chinese medicine formula: From discovery to compatibility mechanism. J. Ethnopharmacol. 2020 254 112687 10.1016/j.jep.2020.112687
    [Google Scholar]
  13. Bobin-Dubigeon C. Luu H.T. Leuillet S. Lavergne S.N. Carton T. Le Vacon F. Michel C. Nazih H. Bard J.M. Faecal microbiota composition varies between patients with breast cancer and healthy women: A comparative case-control study. Nutrients 2021 13 8 2705 10.3390/nu13082705
    [Google Scholar]
  14. Nguyen S.M. Tran H.T.T. Long J. Shrubsole M.J. Cai H. Yang Y. Cai Q. Tran T.V. Zheng W. Shu X.O. Gut microbiome in association with chemotherapy‐induced toxicities among patients with breast cancer. Cancer 2024 130 11 2014 2030 10.1002/cncr.35229
    [Google Scholar]
  15. Ma J. Sun L. Liu Y. Ren H. Shen Y. Bi F. Zhang T. Wang X. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiol. 2020 20 1 82 10.1186/s12866‑020‑01739‑1
    [Google Scholar]
  16. Juan Z. Qing Z. Yongping L. Qian L. Wu W. Wen Y. Tong J. Ding B. Probiotics for the treatment of docetaxel-related weight gain of breast cancer patients—a single-center, randomized, double-blind, and placebo-controlled trial. Front. Nutr. 2021 8 762929 10.3389/fnut.2021.762929
    [Google Scholar]
  17. Daëron M. The immune system as a system of relations. Front. Immunol. 2022 13 984678 10.3389/fimmu.2022.984678
    [Google Scholar]
  18. Viaud S. Saccheri F. Mignot G. Yamazaki T. Daillère R. Hannani D. Enot D.P. Pfirschke C. Engblom C. Pittet M.J. Schlitzer A. Ginhoux F. Apetoh L. Chachaty E. Woerther P.L. Eberl G. Bérard M. Ecobichon C. Clermont D. Bizet C. Gaboriau-Routhiau V. Cerf-Bensussan N. Opolon P. Yessaad N. Vivier E. Ryffel B. Elson C.O. Doré J. Kroemer G. Lepage P. Boneca I.G. Ghiringhelli F. Zitvogel L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013 342 6161 971 976 10.1126/science.1240537
    [Google Scholar]
  19. Shi Q. Wang J. Zhou M. Zheng R. Zhang X. Liu B. Gut Lactobacillus contribute to the progression of breast cancer by affecting the anti-tumor activities of immune cells in the TME of tumor-bearing mice. Int. Immunopharmacol 2023 124 Pt B 111039 10.1016/j.intimp.2023.111039
    [Google Scholar]
  20. de Moreno de LeBlanc A. Perdigón G. The application of probiotic fermented milks in cancer and intestinal inflammation. Proc. Nutr. Soc. 2010 69 3 421 428 10.1017/S002966511000159X
    [Google Scholar]
  21. Di Modica M. Gargari G. Regondi V. Bonizzi A. Arioli S. Belmonte B. De Cecco L. Fasano E. Bianchi F. Bertolotti A. Tripodo C. Villani L. Corsi F. Guglielmetti S. Balsari A. Triulzi T. Tagliabue E. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 2021 81 8 2195 2206 10.1158/0008‑5472.CAN‑20‑1659
    [Google Scholar]
  22. Parida S. Siddharth S. Gatla H.R. Wu S. Wang G. Gabrielson K. Sears C.L. Ladle B.H. Sharma D. Gut colonization with an obesity-associated enteropathogenic microbe modulates the premetastatic niches to promote breast cancer lung and liver metastasis. Front. Immunol. 2023 14 1194931 10.3389/fimmu.2023.1194931
    [Google Scholar]
  23. Sampsell K. Wang W. Ohland C. Mager L.F. Pett N. Lowry D.E. Sales K.M. McNeely M.L. McCoy K.D. Culos-Reed S.N. Reimer R.A. Exercise and prebiotic fiber provide gut microbiota-driven benefit in a survivor to germ-free mouse translational model of breast cancer. Cancers 2022 14 11 2722 10.3390/cancers14112722
    [Google Scholar]
  24. Nakkarach A. Foo H.L. Song A.A.L. Mutalib N.E.A. Nitisinprasert S. Withayagiat U. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb. Cell Fact. 2021 20 1 36 10.1186/s12934‑020‑01477‑z
    [Google Scholar]
  25. Hinshaw D.C. Swain C.A. Chen D. Hanna A. Molina P.A. Maynard C.L. Lee G. McFarland B.C. Samant R.S. Shevde L.A. Hedgehog blockade remodels the gut microbiota and the intestinal effector CD8+ T cells in a mouse model of mammary carcinoma. Lab. Invest. 2022 102 11 1236 1244 10.1038/s41374‑022‑00828‑1
    [Google Scholar]
  26. Kan L.L.Y. Chan B.C.L. Yue G.G.L. Li P. Hon S.S.M. Huang D. Tsang M.S.M. Lau C.B.S. Leung P.C. Wong C.K. Immunoregulatory and anti-cancer activities of combination treatment of novel four-herb formula and doxorubicin in 4T1-breast cancer bearing mice. Chin. J. Integr. Med. 2024 30 4 311 321 10.1007/s11655‑023‑3745‑6
    [Google Scholar]
  27. Lakritz J.R. Poutahidis T. Mirabal S. Varian B.J. Levkovich T. Ibrahim Y.M. Ward J.M. Teng E.C. Fisher B. Parry N. Lesage S. Alberg N. Gourishetti S. Fox J.G. Ge Z. Erdman S.E. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 2015 6 11 9387 9396 10.18632/oncotarget.3328
    [Google Scholar]
  28. Su J. Su L. Li D. Shuai O. Zhang Y. Liang H. Jiao C. Xu Z. Lai Y. Xie Y. Antitumor activity of extract from the sporoderm-breaking spore of ganoderma lucidum: Restoration on exhausted cytotoxic T cell with gut microbiota remodeling. Front. Immunol. 2018 9 1765 10.3389/fimmu.2018.01765
    [Google Scholar]
  29. Rao V.P. Poutahidis T. Ge Z. Nambiar P.R. Boussahmain C. Wang Y.Y. Horwitz B.H. Fox J.G. Erdman S.E. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res. 2006 66 15 7395 7400 10.1158/0008‑5472.CAN‑06‑0558
    [Google Scholar]
  30. Goedert J.J. Hua X. Bielecka A. Okayasu I. Milne G.L. Jones G.S. Fujiwara M. Sinha R. Wan Y. Xu X. Ravel J. Shi J. Palm N.W. Feigelson H.S. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br. J. Cancer 2018 118 4 471 479 10.1038/bjc.2017.435
    [Google Scholar]
  31. Schettini F. Fontana A. Gattazzo F. Strina C. Milani M. Cappelletti M.R. Cervoni V. Morelli L. Curigliano G. Iebba V. Generali D. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: A prospective cross-sectional exploratory study. Eur. J. Cancer 2023 191 112948 10.1016/j.ejca.2023.112948
    [Google Scholar]
  32. Khoshbin K. Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020 319 5 G589 G608 10.1152/ajpgi.00245.2020
    [Google Scholar]
  33. Rohr M.W. Narasimhulu C.A. Rudeski-Rohr T.A. Parthasarathy S. Negative effects of a high-fat diet on intestinal permeability: A review. Adv. Nutr. 2020 11 1 77 91 10.1093/advances/nmz061
    [Google Scholar]
  34. Aleman R.S. Moncada M. Aryana K.J. Leaky gut and the ingredients that help treat it: A review. Molecules 2023 28 2 619 10.3390/molecules28020619
    [Google Scholar]
  35. Shrout M.R. Madison A.A. Renna M.E. Alfano C.M. Povoski S.P. Lipari A.M. Agnese D.M. Carson W.E. Malarkey W.B. Bailey M.T. Kiecolt-Glaser J.K. The gut connection: Intestinal permeability as a pathway from breast cancer survivors’ relationship satisfaction to inflammation across treatment. Brain Behav. Immun. 2022 100 145 154 10.1016/j.bbi.2021.11.012
    [Google Scholar]
  36. Seethaler B. Nguyen N.K. Basrai M. Kiechle M. Walter J. Delzenne N.M. Bischoff S.C. Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: Data from the randomized controlled LIBRE trial. Am. J. Clin. Nutr. 2022 116 4 928 942 10.1093/ajcn/nqac175
    [Google Scholar]
  37. Xue M. Ji X. Liang H. Liu Y. Wang B. Sun L. Li W. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. Food Funct. 2018 9 2 1214 1223 10.1039/C7FO01677H
    [Google Scholar]
  38. Hu S. Ding Q. Zhang W. Kang M. Ma J. Zhao L. Gut microbial beta-glucuronidase: A vital regulator in female estrogen metabolism. Gut Microbes 2023 15 1 2236749 10.1080/19490976.2023.2236749
    [Google Scholar]
  39. Laborda-Illanes A. Sanchez-Alcoholado L. Dominguez-Recio M.E. Jimenez-Rodriguez B. Lavado R. Comino-Méndez I. Alba E. Queipo-Ortuño M.I. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers 2020 12 9 2465 10.3390/cancers12092465
    [Google Scholar]
  40. Kumar R.S. Goyal N. Estrogens as regulator of hematopoietic stem cell, immune cells and bone biology. Life Sci. 2021 269 119091 10.1016/j.lfs.2021.119091
    [Google Scholar]
  41. Fuentes N. Silveyra P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019 116 135 170 10.1016/bs.apcsb.2019.01.001
    [Google Scholar]
  42. Chen Q. Wang B. Wang S. Qian X. Li X. Zhao J. Zhang H. Chen W. Wang G. Modulation of the gut microbiota structure with probiotics and isoflavone alleviates metabolic disorder in ovariectomized mice. Nutrients 2021 13 6 1793 10.3390/nu13061793
    [Google Scholar]
  43. Zengul A.G. Demark-Wahnefried W. Barnes S. Morrow C.D. Bertrand B. Berryhill T.F. Frugé A.D. Associations between Dietary Fiber, the fecal microbiota and estrogen metabolism in postmenopausal women with breast cancer. Nutr. Cancer 2021 73 7 1108 1117 10.1080/01635581.2020.1784444
    [Google Scholar]
  44. Tian W. Yang L. Wu D. Deng Z. Hong K. Toxicity, pharmacokinetics, and gut microbiome of oral administration of sesterterpene mho7 derived from a marine fungus. Mar. Drugs 2019 17 12 667 10.3390/md17120667
    [Google Scholar]
  45. Brown L.J. Achinger-Kawecka J. Portman N. Clark S. Stirzaker C. Lim E. Epigenetic therapies and biomarkers in breast cancer. Cancers 2022 14 3 474 10.3390/cancers14030474
    [Google Scholar]
  46. Woo V. Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes 2022 14 1 2022407 10.1080/19490976.2021.2022407
    [Google Scholar]
  47. Cui J. Sachaphibulkij K. Teo W.S. Lim H.M. Zou L. Ong C.N. Alberts R. Chen J. Lim L.H.K. Annexin-A1 deficiency attenuates stress-induced tumor growth via fatty acid metabolism in mice: an Integrated multiple omics analysis on the stress- microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Theranostics 2022 12 8 3794 3817 10.7150/thno.68611
    [Google Scholar]
  48. Chen M. Li S. Arora I. Yi N. Sharma M. Li Z. Tollefsbol T.O. Li Y. Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. J. Nutr. Biochem. 2022 110 109119 10.1016/j.jnutbio.2022.109119
    [Google Scholar]
  49. Sharma M. Tollefsbol T.O. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp. Cell Res. 2022 416 1 113160 10.1016/j.yexcr.2022.113160
    [Google Scholar]
  50. Yang Q. Wang B. Zheng Q. Li H. Meng X. Zhou F. Zhang L. A Review of gut microbiota‐derived metabolites in tumor progression and cancer therapy. Adv. Sci. 2023 10 15 2207366 10.1002/advs.202207366
    [Google Scholar]
  51. Plaza-Diaz J. Álvarez-Mercado A.I. The interplay between microbiota and chemotherapy-derived metabolites in breast cancer. Metabolites 2023 13 6 703 10.3390/metabo13060703
    [Google Scholar]
  52. Brown E.M. Clardy J. Xavier R.J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe 2023 31 2 173 186 10.1016/j.chom.2023.01.009
    [Google Scholar]
  53. Zhang D. Jian Y.P. Zhang Y.N. Li Y. Gu L.T. Sun H.H. Liu M.D. Zhou H.L. Wang Y.S. Xu Z.X. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023 21 1 212 10.1186/s12964‑023‑01219‑9
    [Google Scholar]
  54. González-Bosch C. Zunszain P.A. Mann G.E. Control of redox homeostasis by short-chain fatty acids: implications for the prevention and treatment of breast cancer. Pathogens 2023 12 3 486 10.3390/pathogens12030486
    [Google Scholar]
  55. Li H. Dong T. Tao M. Zhao H. Lan T. Yan S. Gong X. Hou Q. Ma X. Song Y. Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota. Food Funct. 2024 15 7 3463 3478 10.1039/D3FO04807A
    [Google Scholar]
  56. Zhu Q. Zai H. Zhang K. Zhang X. Luo N. Li X. Hu Y. Wu Y. L-norvaline affects the proliferation of breast cancer cells based on the microbiome and metabolome analysis. J. Appl. Microbiol. 2022 133 2 1014 1026 10.1111/jam.15620
    [Google Scholar]
  57. Praveenraj S.S. Sonali S. Anand N. Tousif H.A. Vichitra C. Kalyan M. Kanna P.V. Chandana K.A. Shasthara P. Mahalakshmi A.M. Yang J. Pandi-Perumal S.R. Sakharkar M.K. Chidambaram S.B. The role of a gut microbial-derived metabolite, trimethylamine N-Oxide (TMAO), in neurological disorders. Mol. Neurobiol. 2022 59 11 6684 6700 10.1007/s12035‑022‑02990‑5
    [Google Scholar]
  58. Chhibber-Goel J. Singhal V. Parakh N. Bhargava B. Sharma A. The metabolite trimethylamine-N-Oxide is an emergent biomarker of human health. Curr. Med. Chem. 2017 24 36 3942 3953 10.2174/0929867323666160830104025
    [Google Scholar]
  59. Wang H. Rong X. Zhao G. Zhou Y. Xiao Y. Ma D. Jin X. Wu Y. Yan Y. Yang H. Zhou Y. Qian M. Niu C. Hu X. Li D.Q. Liu Q. Wen Y. Jiang Y.Z. Zhao C. Shao Z.M. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 2022 34 4 581 594.e8 10.1016/j.cmet.2022.02.010
    [Google Scholar]
  60. Morad H.M. Abou-Elzahab M.M. Aref S. EL-Sokkary, A.M.A. Diagnostic value of 1 H NMR-based metabolomics in acute lymphoblastic leukemia, acute myeloid leukemia, and breast cancer. ACS Omega 2022 7 9 8128 8140 10.1021/acsomega.2c00083
    [Google Scholar]
  61. Xiang J. Zhang Z. Xie H. Zhang C. Bai Y. Cao H. Che Q. Guo J. Su Z. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR. Gut Microbes 2021 13 1 1949095 10.1080/19490976.2021.1949095
    [Google Scholar]
  62. Režen T. Rozman D. Kovács T. Kovács P. Sipos A. Bai P. Mikó E. The role of bile acids in carcinogenesis. Cell. Mol. Life Sci. 2022 79 5 243 10.1007/s00018‑022‑04278‑2
    [Google Scholar]
  63. Wu R. Yu I. Tokumaru Y. Asaoka M. Oshi M. Yan L. Okuda S. Ishikawa T. Takabe K. Elevated bile acid metabolism and microbiome are associated with suppressed cell proliferation and better survival in breast cancer. Am. J. Cancer Res. 2022 12 11 5271 5285
    [Google Scholar]
  64. Phelan J.P. Reen F.J. Dunphy N. O’Connor R. O’Gara F. Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models. BMC Cancer 2016 16 1 476 10.1186/s12885‑016‑2528‑2
    [Google Scholar]
  65. Li W. Zou L. Huang S. Miao H. Liu K. Geng Y. Liu Y. Wu W. The anticancer activity of bile acids in drug discovery and development. Front. Pharmacol. 2024 15 1362382 10.3389/fphar.2024.1362382
    [Google Scholar]
  66. Waks A.G. Winer E.P. Breast cancer treatment. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323
    [Google Scholar]
  67. Spronk I. Schellevis F.G. Burgers J.S. de Bock G.H. Korevaar J.C. Incidence of isolated local breast cancer recurrence and contralateral breast cancer: A systematic review. Breast 2018 39 70 79 10.1016/j.breast.2018.03.011
    [Google Scholar]
  68. Sun Y. Zhou Q. Chen F. Gao X. Yang L. Jin X. Wink M. Sharopov F.S. Sethi G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol. Res. 2023 193 106817 10.1016/j.phrs.2023.106817
    [Google Scholar]
  69. Jiang Y. Fan L. The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer. J. Ethnopharmacol. 2021 266 113456 10.1016/j.jep.2020.113456
    [Google Scholar]
  70. Yang M. Guo J. Li J. Wang S. Sun Y. Liu Y. Peng Y. Platycodon grandiflorum-derived extracellular vesicles suppress triple-negative breast cancer growth by reversing the immunosuppressive tumor microenvironment and modulating the gut microbiota. J. Nanobiotechnology 2025 23 1 92 10.1186/s12951‑025‑03139‑x
    [Google Scholar]
  71. Chen Q. Li Q. Liang Y. Zu M. Chen N. Canup B.S.B. Luo L. Wang C. Zeng L. Xiao B. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm. Sin. B 2022 12 2 907 923 10.1016/j.apsb.2021.08.016
    [Google Scholar]
  72. Wang X. Hou H. Li Z. Effect of modified Sijunzi Decoction on gut microbiota and cellular immune function in patients with breast cancer undergoing postoperative chemotherapy. Zhongguo Weishengtaixue Zazhi 2023 35 12 1424 1433
    [Google Scholar]
  73. Shao M. Kuang Z. Wang W. Li S. Li G. Song Y. Li H. Cui G. Zhou H. Aucubin exerts anticancer activity in breast cancer and regulates intestinal microbiota. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/4534411
    [Google Scholar]
  74. Kim J.K. Choi M.S. Kim J.Y. Yu J.S. Seo J.I. Yoo H.H. Kim D.H. Ginkgo biloba leaf extract suppresses intestinal human breast cancer resistance protein expression in mice: Correlation with gut microbiota. Biomed. Pharmacother. 2021 140 111712 10.1016/j.biopha.2021.111712
    [Google Scholar]
  75. Wang Y. Wang X. Li W. Huang H. Di C. Yang Q. Huaier enhances the antitumor effects of CDK 4/6 inhibitor by remodeling the immune microenvironment and gut microbiota in breast cancer. J. Ethnopharmacol. 2025 347 119723 10.1016/j.jep.2025.119723
    [Google Scholar]
  76. Wei X. Wang F. Tan P. Huang H. Wang Z. Xie J. Wang L. Liu D. Hu Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol. Res. 2024 203 107148 10.1016/j.phrs.2024.107148
    [Google Scholar]
  77. Dai H. Han J. Wang T. Yin W.B. Chen Y. Liu H. Recent advances in gut microbiota-associated natural products: Structures, bioactivities, and mechanisms. Nat. Prod. Rep. 2023 40 6 1078 1093 10.1039/D2NP00075J
    [Google Scholar]
  78. Barzaman K. Moradi-Kalbolandi S. Hosseinzadeh A. Kazemi M.H. Khorramdelazad H. Safari E. Farahmand L. Breast cancer immunotherapy: Current and novel approaches. Int. Immunopharmacol. 2021 98 107886 10.1016/j.intimp.2021.107886
    [Google Scholar]
  79. Lan H. Bilian C. Lei L. Research advances in chemical components pharmacological activities and clinical application of hedyotis diffusa. Chinese Pharmaceutical Affairs 2023 37 12 1451 1460
    [Google Scholar]
  80. Hui-Zhen Q. Si L. Ling-Yu D. Pharmacological effect and mechanism of andrographolide: A review. Zhongguo Shiyan Fangjixue Zazhi 2022 28 06 272 282
    [Google Scholar]
  81. Yan-Fang S. Zong-Shuo L. Wen-Ting L. Anti-breast cancer cell activity of saponins in acanthopanax senticosus (Rupr.etMaxim.) harms. Lishizhen Medicine and Materia Medica Research 2012 23 04 926 927
    [Google Scholar]
  82. Yu S. Yan H. Jia-Tong W. Advances in research on saponins and their pharmacological activities of camellia. Journal of Dalian University 2018 39 06 41 52 [</jrn>]
    [Google Scholar]
  83. Shanglong Z. Xiaolong L. Nan Z. Research progress on the anti-tumor effects of licorice active ingredients alone and in combination with Western medicine. Military Medicine of Joint Logistics 2023 37 02 176 181 [</jrn>]
    [Google Scholar]
  84. Qiu M. Huang K. Liu Y. Yang Y. Tang H. Liu X. Wang C. Chen H. Xiong Y. Zhang J. Yang J. Modulation of intestinal microbiota by glycyrrhizic acid prevents high-fat diet-enhanced pre-metastatic niche formation and metastasis. Mucosal Immunol. 2019 12 4 945 957 10.1038/s41385‑019‑0144‑6
    [Google Scholar]
  85. Song D. Hao J. Fan D. Biological properties and clinical applications of berberine. Front. Med. 2020 14 5 564 582 10.1007/s11684‑019‑0724‑6
    [Google Scholar]
  86. Wen-Jun Z. Yang S. Yang H. Research progress on antitumor effect and compatibility of Ganoderma. Chin. Tradit. Herbal Drugs 2023 54 16 5390 5398
    [Google Scholar]
  87. Meng-Chen W. Xue-Lian Z. Xiang-Dong C. Anti-tumor effect and mechanisms of triterpenoids and polysaccharides in ganoderma lucidum: A review. Zhongguo Shiyan Fangjixue Zazhi 2022 28 5 234 241
    [Google Scholar]
  88. Su J. Li D. Chen Q. Li M. Su L. Luo T. Liang D. Lai G. Shuai O. Jiao C. Wu Q. Xie Y. Zhou X. Anti-breast cancer enhancement of a polysaccharide from spore of ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping. Front. Microbiol. 2018 9 3099 10.3389/fmicb.2018.03099
    [Google Scholar]
  89. Zhang L. Huang S. Yuan Y. Butyrate inhibits the malignant biological behaviors of breast cancer cells by facilitating cuproptosis-associated gene expression. J. Cancer Res. Clin. Oncol. 2024 150 6 287 10.1007/s00432‑024‑05807‑1
    [Google Scholar]
  90. Ma W. Berberine and regular exercise synergetically inhibit the progression of breast cancer by mediating SCFAs and immune regulation. Southwest University 2021
    [Google Scholar]
  91. Wei Z. Research evaluation of antioxidant and antitumour activities of Ipomoea batatas leaves. South China University of Technology 2015
    [Google Scholar]
  92. Han B. Jiang P. Jiang L. Li X. Ye X. Three phytosterols from sweet potato inhibit MCF7-xenograft-tumor growth through modulating gut microbiota homeostasis and SCFAs secretion. Food Res. Int. 2021 141 110147 10.1016/j.foodres.2021.110147
    [Google Scholar]
  93. Khan I. Huang G. Li X. Liao W. Leong W.K. Xia W. Bian X. Wu J. Hsiao W.L.W. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in Apc mice. Pharmacol. Res. 2019 148 104448 10.1016/j.phrs.2019.104448
    [Google Scholar]
  94. Hong W. Huang G. Wang D. Xu Y. Qiu J. Pei B. Qian D. Meng X. Gut microbiome causal impacts on the prognosis of breast cancer: A Mendelian randomization study. BMC Genomics 2023 24 1 497 10.1186/s12864‑023‑09608‑7
    [Google Scholar]
  95. Cheng-Zhao L. Hai-Tian M. Si-Xiang Z. Effect of soy isoflavones on cAMP/PKA pathway in breast cancer cells of the rat. Wuli Xuebao 2005 04 517 522
    [Google Scholar]
  96. Montalesi E. Cipolletti M. Cracco P. Fiocchetti M. Marino M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers 2020 12 1 167 10.3390/cancers12010167
    [Google Scholar]
  97. Hang Y. Xiao-Wen Z. Yao-Dong G. Progress on application of inulin in the fields of medicine and food. Food. and Drug 2024 26 03 305 312
    [Google Scholar]
  98. Wu H. Van Der Pol W.J. Dubois L.G. Morrow C.D. Tollefsbol T.O. Dietary Supplementation of Inulin Contributes to the Prevention of Estrogen Receptor-Negative Mammary Cancer by Alteration of Gut Microbial Communities and Epigenetic Regulations. Int. J. Mol. Sci. 2023 24 10 9015 10.3390/ijms24109015
    [Google Scholar]
  99. Lin C. Effect of Soy Isoflavone Phytoestrogens on the Growth Of Rat Breast Carcinoma Cell And Small Intestinal Epithelial Celland Mechanisms Involved. Nanjing Agricultural University 2004
    [Google Scholar]
  100. Rahman M.M. Wu H. Tollefsbol T.O. A novel combinatorial approach using sulforaphane- and withaferin A-rich extracts for prevention of estrogen receptor-negative breast cancer through epigenetic and gut microbial mechanisms. Sci. Rep. 2024 14 1 12091 10.1038/s41598‑024‑62084‑1
    [Google Scholar]
  101. Jang W.Y. Kim M.Y. Cho J.Y. Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int. J. Mol. Sci. 2022 23 24 15482 10.3390/ijms232415482
    [Google Scholar]
  102. Hu W. Wang X. Liu Z. Zhao Y. Sun Y. Effect and mechanism of Yueju Pills on breast cancer induced by DMBA in rats. Zhongguo Zhongyao Zazhi 2024 49 02 431 442
    [Google Scholar]
  103. Chen Y. The mechanistic study of rhubarb for modulation of gut micro-ecology and prohibition of breast cancer-related gene expression in mice. Guangzhou University of Chinese Medicine 2019
    [Google Scholar]
  104. Haque S. Raina R. Afroze N. Hussain A. Alsulimani A. Singh V. Mishra B.N. Kaul S. Kharwar R.N. Microbial dysbiosis and epigenetics modulation in cancer development – A chemopreventive approach. Semin. Cancer Biol. 2022 86 Pt 3 666 681 10.1016/j.semcancer.2021.06.024
    [Google Scholar]
  105. Luo L. Ginger GEO through DNA methylation modified PTEN-PI3KAKT pathway inhibiting the proliferation of triple negative breast cancer mechanism research. Pharmacy 2023
    [Google Scholar]
  106. Feng R.Q. Li D.H. Liu X.K. Zhao X.H. Wen Q.E. Yang Y. Traditional Chinese medicine for breast cancer: A review. Breast Cancer 2023 15 747 759 10.2147/BCTT.S429530
    [Google Scholar]
  107. Chu Y.R. Kung P.T. Liu L.C. Lin C.Y. Ou-Yang F. Yue C.H. Su S.Y. Chen Y.Y. Wang W.C. Kao H.F. Chou W.Y. Tsai W.C. Comparison of quality of life between breast cancer patients treated with and without adjunctive traditional chinese medicine in Taiwan. Integr. Cancer Ther. 2023 22 15347354221150907 10.1177/15347354221150907
    [Google Scholar]
  108. Pan J. Fu S. Zhou Q. Lin D. Chen Q. Modified xiaoyao san combined with chemotherapy for breast cancer: A systematic review and meta-analysis of randomized controlled trials. Front. Oncol. 2023 13 1050337 10.3389/fonc.2023.1050337
    [Google Scholar]
  109. Wang Y. Li J.W. Qin Y.N. Sun C.P. Chen J.J. Ruan Y.Y. Chen L.X. Liu S. Liu G.Y. Clinical observation on the effect of Chinese medicine-“TCM formula” intervention on recurrence and metastasis of triple negative breast cancer. Complement. Ther. Med. 2020 52 102456 10.1016/j.ctim.2020.102456
    [Google Scholar]
  110. Hong J. Chen X. Huang J. Li C. Zhong L. Chen L. Wu J. Huang O. He J. Zhu L. Chen W. Li Y. Wan H. Shen K. Danggui buxue decoction, a classical formula of traditional chinese medicine, fails to prevent myelosuppression in breast cancer patients treated with adjuvant chemotherapy: A prospective study. Integr. Cancer Ther. 2017 16 3 406 413 10.1177/1534735416675952
    [Google Scholar]
  111. Urbaniak C. Gloor G.B. Brackstone M. Scott L. Tangney M. Reid G. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 2016 82 16 5039 5048 10.1128/AEM.01235‑16
    [Google Scholar]
  112. Tzeng A. Sangwan N. Jia M. Liu C.C. Keslar K.S. Downs-Kelly E. Fairchild R.L. Al-Hilli Z. Grobmyer S.R. Eng C. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 2021 13 1 60 10.1186/s13073‑021‑00874‑2
    [Google Scholar]
  113. Wilkie T. Verma A.K. Zhao H. Charan M. Ahirwar D.K. Kant S. Pancholi V. Mishra S. Ganju R.K. Lipopolysaccharide from the commensal microbiota of the breast enhances cancer growth: role of S100A7 and TLR4. Mol. Oncol. 2022 16 7 1508 1522 10.1002/1878‑0261.12975
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096400579250924110355
Loading
/content/journals/ccdt/10.2174/0115680096400579250924110355
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Breast cancer ; gut microbiota ; traditional chinese medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test