Skip to content
2000
image of Lipidomic Profiling in Cancer: Phospholipid Alterations and their Role in Tumor Progression

Abstract

Phospholipids play a crucial role in various aspects of cancer biology, including tumor progression, metastasis, and cell survival. Recent studies have highlighted the significance of phospholipid metabolism and signaling in multiple cancer types, such as breast, cervical, prostate, bladder, colorectal, liver, lung, melanoma, mesothelioma, and oral cancer. Alterations in phospholipid profiles, particularly in phosphatidylcholine and phosphatidylethanolamine, have been identified as potential biomarkers for cancer diagnosis and prognosis. Moreover, specific phospholipids and their metabolic pathways have been implicated in cancer cell proliferation, migration, invasion, and resistance to therapy. Enzymes involved in phospholipid metabolism, such as phospholipases, choline kinase, and autotaxin, have emerged as promising therapeutic targets. The harmony between phospholipids and oncogenic signaling pathways, such as PI3K/AKT and Wnt/β-catenin, further emphasizes their importance in cancer progression. Additionally, phospholipids have been shown to modify the tumor microenvironment, influencing immune responses and angiogenesis. The application of advanced lipidomic profiling techniques, such as mass spectrometry, has facilitated the identification of novel phospholipid biomarkers and provided insights into the metabolic reprogramming of cancer cells. Furthermore, phospholipid-based nanocarriers have demonstrated potential in targeted drug delivery and cancer immunotherapy. In conclusion, the multifaceted roles of phospholipids in cancer biology highlight their significance as diagnostic markers, prognostic indicators, as well as therapeutic targets, offering new avenues for cancer management and treatment. This review is conducted in order to answer three questions: What is the role of phospholipids in different types of cancer? What are the key lipidomic biomarkers for different cancers? What are the key effects of phospholipids on various types of cancer cell survival?

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096398874250818210830
2025-09-04
2025-12-22
Loading full text...

Full text loading...

References

  1. Mattiuzzi C. Lippi G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019 9 4 217 222 10.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  2. Priestley P. Baber J. Lolkema M.P. Steeghs N. de Bruijn E. Shale C. Duyvesteyn K. Haidari S. van Hoeck A. Onstenk W. Roepman P. Voda M. Bloemendal H.J. Tjan-Heijnen V.C.G. van Herpen C.M.L. Labots M. Witteveen P.O. Smit E.F. Sleijfer S. Voest E.E. Cuppen E. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019 575 7781 210 216 10.1038/s41586‑019‑1689‑y 31645765
    [Google Scholar]
  3. Martin-Perez M. Urdiroz-Urricelqui U. Bigas C. Benitah S.A. The role of lipids in cancer progression and metastasis. Cell Metab. 2022 34 11 1675 1699 10.1016/j.cmet.2022.09.023 36261043
    [Google Scholar]
  4. Fu Y. Zou T. Shen X. Nelson P.J. Li J. Wu C. Yang J. Zheng Y. Bruns C. Zhao Y. Qin L. Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm 2021 2 1 27 59 10.1002/mco2.27 34766135
    [Google Scholar]
  5. Vogel F.C.E. Chaves-Filho A.B. Schulze A. Lipids as mediators of cancer progression and metastasis. Nat. Cancer 2024 5 1 16 29 10.1038/s43018‑023‑00702‑z 38273023
    [Google Scholar]
  6. Broadfield L.A. Pane A.A. Talebi A. Swinnen J.V. Fendt S.M. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev. Cell 2021 56 10 1363 1393 10.1016/j.devcel.2021.04.013 33945792
    [Google Scholar]
  7. Deng T. Lyon C.J. Bergin S. Caligiuri M.A. Hsueh W.A. Obesity, inflammation and cancer. Annu. Rev. Pathol. 2016 11 1 421 449 10.1146/annurev‑pathol‑012615‑044359 27193454
    [Google Scholar]
  8. Petrelli F. Cortellini A. Indini A. Tomasello G. Ghidini M. Nigro O. Salati M. Dottorini L. Iaculli A. Varricchio A. Rampulla V. Barni S. Cabiddu M. Bossi A. Ghidini A. Zaniboni A. Association of obesity with survival outcomes in patients with cancer: A systematic review and meta-analysis. JAMA Netw. Open 2021 4 3 e213520 e20 10.1001/jamanetworkopen.2021.3520 33779745
    [Google Scholar]
  9. Beyaz S. Mana M.D. Roper J. Kedrin D. Saadatpour A. Hong S.J. Bauer-Rowe K.E. Xifaras M.E. Akkad A. Arias E. Pinello L. Katz Y. Shinagare S. Abu-Remaileh M. Mihaylova M.M. Lamming D.W. Dogum R. Guo G. Bell G.W. Selig M. Nielsen G.P. Gupta N. Ferrone C.R. Deshpande V. Yuan G.C. Orkin S.H. Sabatini D.M. Yilmaz Ö.H. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 2016 531 7592 53 58 10.1038/nature17173 26935695
    [Google Scholar]
  10. Corn K.C. Windham M.A. Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res. 2020 80 101055 10.1016/j.plipres.2020.101055 32791170
    [Google Scholar]
  11. Contarini G. Povolo M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013 14 2 2808 2831 10.3390/ijms14022808 23434649
    [Google Scholar]
  12. Wei W. Yang J. Yang D. Wang X. Yang Z. Jin Q. Wang M. Lai J. Wang X. Phospholipid composition and fat globule structure I: Comparison of human milk fat from different gestational ages, lactation stages, and infant formulas. J. Agric. Food Chem. 2019 67 50 13922 13928 10.1021/acs.jafc.9b04247 31746600
    [Google Scholar]
  13. Lordan R. Tsoupras A. Zabetakis I. Phospholipids of animal and marine origin: Structure, function, and anti-inflammatory properties. Molecules 2017 22 11 1964 10.3390/molecules22111964 29135918
    [Google Scholar]
  14. Wang B. Tontonoz P. Phospholipid remodeling in physiology and disease. Annu. Rev. Physiol. 2019 81 1 165 188 10.1146/annurev‑physiol‑020518‑114444 30379616
    [Google Scholar]
  15. Stoica C. Ferreira A.K. Hannan K. Bakovic M. Bilayer forming phospholipids as targets for cancer therapy. Int. J. Mol. Sci. 2022 23 9 5266 10.3390/ijms23095266 35563655
    [Google Scholar]
  16. Cheng M. Bhujwalla Z.M. Glunde K. Targeting phospholipid metabolism in cancer. Front. Oncol. 2016 6 266 10.3389/fonc.2016.00266 28083512
    [Google Scholar]
  17. Seok J.K. Hong E.H. Yang G. Lee H.E. Kim S.E. Liu K.H. Kang H.C. Cho Y.Y. Lee H.S. Lee J.Y. Oxidized phospholipids in tumor microenvironment stimulate tumor metastasis via regulation of autophagy. Cells 2021 10 3 558 10.3390/cells10030558 33806593
    [Google Scholar]
  18. Bandu R. Mok H.J. Kim K.P. Phospholipids as cancer biomarkers: Mass spectrometry‐based analysis. Mass Spectrom. Rev. 2018 37 2 107 138 10.1002/mas.21510 27276657
    [Google Scholar]
  19. Yao Y. Wang X. Li H. Fan J. Qian X. Li H. Xu Y. Phospholipase D as a key modulator of cancer progression. Biol. Rev. Camb. Philos. Soc. 2020 95 4 911 935 10.1111/brv.12592 32073216
    [Google Scholar]
  20. Kopecka J. Trouillas P. Gašparović A.Č. Gazzano E. Assaraf Y.G. Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist. Updat. 2020 49 100670 10.1016/j.drup.2019.100670 31846838
    [Google Scholar]
  21. Owusu Obeng E. Rusciano I. Marvi M.V. Fazio A. Ratti S. Follo M.Y. Xian J. Manzoli L. Billi A.M. Mongiorgi S. Ramazzotti G. Cocco L. Phosphoinositide-dependent signaling in cancer: A focus on phospholipase c isozymes. Int. J. Mol. Sci. 2020 21 7 2581 10.3390/ijms21072581 32276377
    [Google Scholar]
  22. Scott K.F. Sajinovic M. Hein J. Nixdorf S. Galettis P. Liauw W. de Souza P. Dong Q. Graham G.G. Russell P.J. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie 2010 92 6 601 610 10.1016/j.biochi.2010.03.019 20362028
    [Google Scholar]
  23. Hiraide T. Sakaguchi T. Furuhashi S. Matsumoto T. Ozaki Y. Kiuchi R. Takeda M. Shibasaki Y. Morita Y. Kikuchi H. Baba M. Setou M. Konno H. Abstract 2048: Saturated fatty acids in cell membrane phospholipids play an important role in chemoresistance in colorectal cancer. Cancer Res. 2017 77 13 Supplement 2048 48 10.1158/1538‑7445.AM2017‑2048
    [Google Scholar]
  24. Hofmanová J. Slavík J. Ovesná P. Tylichová Z. Dušek L. Straková N. Vaculová A.H. Ciganek M. Kala Z. Jíra M. Penka I. Kyclová J. Kolář Z. Kozubík A. Machala M. Vondráček J. Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: Phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples. PLoS One 2020 15 1 e0228010 10.1371/journal.pone.0228010 31999740
    [Google Scholar]
  25. Sonoda H. Kitamura C. Kano K. Anzai H. Nagai Y. Abe S. Yokoyama Y. Ishii H. Kishikawa J. Murono K. Emoto S. Sasaki K. Kawai K. Nozawa H. Aoki J. Ishihara S. Changes in lysophospholipid components in ulcerative colitis and colitis-associated cancer. Anticancer Res. 2022 42 5 2461 2468 10.21873/anticanres.15724 35489747
    [Google Scholar]
  26. Klekowski J. Chabowski M. Krzystek-Korpacka M. Fleszar M. The utility of lipidomic analysis in colorectal cancer diagnosis and prognosis—A systematic review of recent literature. Int. J. Mol. Sci. 2024 25 14 7722 10.3390/ijms25147722 39062964
    [Google Scholar]
  27. Ecker J. Benedetti E. Kindt A.S. Höring M. Perl M. Machmüller A.C. Sichler A. Plagge J. Wang Y. Zeissig S. The colorectal cancer lipidome: Identification of a robust tumor-specific lipid species signature. Gastroenterology 2021 161 3 910 923.e19 10.1053/j.gastro.2021.05.009
    [Google Scholar]
  28. Liu T. Peng F. Yu J. Tan Z. Rao T. Chen Y. Wang Y. Liu Z. Zhou H. Peng J. LC-MS-based lipid profile in colorectal cancer patients: TAGs are the main disturbed lipid markers of colorectal cancer progression. Anal. Bioanal. Chem. 2019 411 20 5079 5088 10.1007/s00216‑019‑01872‑5 31201454
    [Google Scholar]
  29. Zhu Y. Wang L. Nong Y. Liang Y. Huang Z. Zhu P. Zhang Q. Serum untargeted uhplc-hrms-based lipidomics to discover the potential biomarker of colorectal advanced adenoma. Cancer Manag. Res. 2021 13 8865 8878 10.2147/CMAR.S336322 34858060
    [Google Scholar]
  30. Liu T. Tan Z. Yu J. Peng F. Guo J. Meng W. Chen Y. Rao T. Liu Z. Peng J. A conjunctive lipidomic approach reveals plasma ethanolamine plasmalogens and fatty acids as early diagnostic biomarkers for colorectal cancer patients. Expert Rev. Proteomics 2020 17 3 233 242 10.1080/14789450.2020.1757443 32306783
    [Google Scholar]
  31. Liu X. Zhang M. Cheng X. Liu X. Sun H. Guo Z. Li J. Tang X. Wang Z. Sun W. Zhang Y. Ji Z. Lc-ms-based plasma metabolomics and lipidomics analyses for differential diagnosis of bladder cancer and renal cell carcinoma. Front. Oncol. 2020 10 717 10.3389/fonc.2020.00717 32500026
    [Google Scholar]
  32. Hiraide T. Morita Y. Horikawa M. Sugiyama E. Sato T. Kahyo T. Furuhashi S. Takeda M. Kikuchi H. Hiramatsu Y. Sakaguchi T. Konno H. Setou M. Takeuchi H. Saturated fatty acids in cell membrane lipids induce resistance to 5-fluorouracil in colorectal cancer cells. Anticancer Res. 2022 42 7 3313 3324 10.21873/anticanres.15819 35790250
    [Google Scholar]
  33. Wittmann B.M. Stirdivant S.M. Mitchell M.W. Wulff J.E. McDunn J.E. Li Z. Dennis-Barrie A. Neri B.P. Milburn M.V. Lotan Y. Wolfert R.L. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLoS One 2014 9 12 e115870 10.1371/journal.pone.0115870 25541698
    [Google Scholar]
  34. Hua S. Vignarajan S. Yao M. Xie C. Sved P. Dong Q. AKT and cytosolic phospholipase A 2 α form a positive loop in prostate cancer cells. Curr. Cancer Drug Targets 2015 15 9 781 791 10.2174/1568009615666150706103234 26143945
    [Google Scholar]
  35. McClinton S. Moffat L.E.F. Horrobin D.F. Manku M.S. Abnormalities of essential fatty acid distribution in the plasma phospholipids of patients with bladder cancer. Br. J. Cancer 1991 63 2 314 316 10.1038/bjc.1991.73 1997113
    [Google Scholar]
  36. Gillezeau C.N. van Gerwen M. Ramos J. Liu B. Flores R. Taioli E. Biomarkers for malignant pleural mesothelioma: A meta-analysis. Carcinogenesis 2019 40 11 1320 1331 10.1093/carcin/bgz103 31169881
    [Google Scholar]
  37. Chen Z. Gaudino G. Pass H.I. Carbone M. Yang H. Diagnostic and prognostic biomarkers for malignant mesothelioma: An update. Transl. Lung Cancer Res. 2017 6 3 259 269 10.21037/tlcr.2017.05.06 28713671
    [Google Scholar]
  38. Arnold D.T. Maskell N.A. Biomarkers in mesothelioma. Ann. Clin. Biochem. 2018 55 1 49 58 10.1177/0004563217741145 29058958
    [Google Scholar]
  39. Vandenhoeck J. van Meerbeeck J.P. Fransen E. Raskin J. Van Camp G. Op de Beeck K. Lamote K. DNA methylation as a diagnostic biomarker for malignant mesothelioma: A systematic review and meta-analysis. J. Thorac. Oncol. 2021 16 9 1461 1478 10.1016/j.jtho.2021.05.015 34082107
    [Google Scholar]
  40. He J. Zhang F. Rachel Tay L.W. Boroda S. Nian W. Levental K.R. Levental I. Harris T.E. Chang J.T. Du G. Lipin‐1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple‐negative breast cancer cell survival. FASEB J. 2017 31 7 2893 2904 10.1096/fj.201601353R 28347999
    [Google Scholar]
  41. Lamoury G. Batarseh A.M. Kehelpannala C. Pascovici D. Li D. Heffernan K. Lipidomic signature from plasma to detect localised breast cancer. J. Clin. Oncol. 2023 41 16 Supplement 565 10.1200/JCO.2023.41.16_suppl.565
    [Google Scholar]
  42. Xu Y. Fang X.J. Casey G. Mills G.B. Lysophospholipids activate ovarian and breast cancer cells. Biochem. J. 1995 309 3 933 940 10.1042/bj3090933 7639713
    [Google Scholar]
  43. Kehelpannala C. Pascovici D. Li D. Heffernan K. Lamoury G. Batarseh A.M. Detection of early-stage breast cancer in women by plasma lipidomic profiling. J. Clin. Oncol. 2022 40 16 Supplement 554 10.1200/JCO.2022.40.16_suppl.554
    [Google Scholar]
  44. Lee Y.J. Shin K.J. Jang H-J. Noh D-Y. Ryu S.H. Suh P-G. Phospholipase signaling in breast cancer. In: Translational Research in Breast Cancer. Singapore Springer 2021 23 52 10.1007/978‑981‑32‑9620‑6_2
    [Google Scholar]
  45. Chen X. Chen H. Dai M. Ai J. Li Y. Mahon B. Dai S. Deng Y. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget 2016 7 24 36622 36631 10.18632/oncotarget.9124 27153558
    [Google Scholar]
  46. Wang K.H. Ding D.C. The role and applications of exosomes in gynecological cancer: A review. Cell Transplant. 2023 32 09636897231195240 10.1177/09636897231195240 37632354
    [Google Scholar]
  47. Zhao Y. Yuan X. Li X. Zhang Y. Resveratrol significantly inhibits the occurrence and development of cervical cancer by regulating phospholipid scramblase 1. J. Cell. Biochem. 2019 120 2 1527 1531 10.1002/jcb.27335 30350320
    [Google Scholar]
  48. Lisboa A.Q. Rezende M. Muniz-Junqueira M.I. Ito M.K. Altered plasma phospholipid fatty acids and nutritional status in patients with uterine cervical cancer. Clin. Nutr. 2008 27 3 371 377 10.1016/j.clnu.2008.03.006 18485542
    [Google Scholar]
  49. Barupal D.K. Ramos M.L. Florio A.A. Wheeler W.A. Weinstein S.J. Albanes D. Fiehn O. Graubard B.I. Petrick J.L. McGlynn K.A. Identification of pre‐diagnostic lipid sets associated with liver cancer risk using untargeted lipidomics and chemical set analysis: A nested case‐control study within the ATBC cohort. Int. J. Cancer 2024 154 3 454 464 10.1002/ijc.34726 37694774
    [Google Scholar]
  50. Liu Q. Zhang X. Qi J. Tian X. Dovjak E. Zhang J. Du H. Zhang N. Zhao J. Zhang Y. Wang L. Wei Y. Liu C. Qian R. Xiang L. Li W. Xiu P. Ma C. Yu Y. Jiang S. Comprehensive profiling of lipid metabolic reprogramming expands precision medicine for HCC. Hepatology 2025 81 4 1164 1180 10.1097/HEP.0000000000000962 38899975
    [Google Scholar]
  51. Sanchez J.I. Jiao J. Kwan S.Y. Veillon L. Warmoes M.O. Tan L. Odewole M. Rich N.E. Wei P. Lorenzi P.L. Singal A.G. Beretta L. Lipidomic profiles of plasma exosomes identify candidate biomarkers for early detection of hepatocellular carcinoma in patients with cirrhosis. Cancer Prev. Res. 2021 14 10 955 962 10.1158/1940‑6207.CAPR‑20‑0612 34253566
    [Google Scholar]
  52. Zhang Q. Xu H. Liu R. Gao P. Yang X. Jin W. Zhang Y. Bi K. Li Q. A novel strategy for targeted lipidomics based on lc-tandem-ms parameters prediction, quantification, and multiple statistical data mining: Evaluation of lysophosphatidylcholines as potential cancer biomarkers. Anal. Chem. 2019 91 5 3389 3396 10.1021/acs.analchem.8b04715 30689358
    [Google Scholar]
  53. Rashid M.M. Varghese R.S. Ding Y. Ressom H.W. Biomarker discovery for hepatocellular carcinoma in patients with liver cirrhosis using untargeted metabolomics and lipidomics studies. Metabolites 2023 13 10 1047 10.3390/metabo13101047 37887372
    [Google Scholar]
  54. Godzien J. Lopez-Lopez A. Sieminska J. Jablonowski K. Pietrowska K. Kisluk J. Mojsak M. Dzieciol-Anikiej Z. Barbas C. Reszec J. Kozlowski M. Moniuszko M. Kretowski A. Niklinski J. Ciborowski M. Exploration of oxidized phosphocholine profile in non-small-cell lung cancer. Front. Mol. Biosci. 2024 10 1279645 10.3389/fmolb.2023.1279645 38288337
    [Google Scholar]
  55. Lee J.W. Cho K.M. Jung J.H. Tran Q. Jung W. Park J. Kim K.P. Alteration of phospholipids during the mitophagic process in lung cancer cells. J. Microbiol. Biotechnol. 2016 26 10 1790 1799 10.4014/jmb.1604.04031 27363475
    [Google Scholar]
  56. Wang G. Qiu M. Xing X. Zhou J. Yao H. Li M. Yin R. Hou Y. Li Y. Pan S. Huang Y. Yang F. Bai F. Nie H. Di S. Guo L. Meng Z. Wang J. Yin Y. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci. Transl. Med. 2022 14 630 eabk2756 10.1126/scitranslmed.abk2756 35108060
    [Google Scholar]
  57. Noreldeen H.A.A. Du L. Li W. Liu X. Wang Y. Xu G. Serum lipidomic biomarkers for non-small cell lung cancer in nonsmoking female patients. J. Pharm. Biomed. Anal. 2020 185 113220 10.1016/j.jpba.2020.113220 32145537
    [Google Scholar]
  58. Szász I. Koroknai V. Várvölgyi T. Pál L. Szűcs S. Pikó P. Emri G. Janka E. Szabó I.L. Ádány R. Balázs M. Identification of plasma lipid alterations associated with melanoma metastasis. Int. J. Mol. Sci. 2024 25 8 4251 10.3390/ijms25084251 38673837
    [Google Scholar]
  59. Kim H.Y. Lee H. Kim S.H. Jin H. Bae J. Choi H.K. Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling. Sci. Rep. 2017 7 1 8864 10.1038/s41598‑017‑08433‑9 28821754
    [Google Scholar]
  60. Neittaanmäki N. Zaar O. Cehajic K.S. Nilsson K.D. Katsarelias D. Bagge R.O. Paoli J. Fletcher J.S. ToF‐ SIMS imaging reveals changes in tumor cell lipids during metastatic progression of melanoma. Pigment Cell Melanoma Res. 2024 37 6 793 800 10.1111/pcmr.13182 38943376
    [Google Scholar]
  61. Perez-Valle A. Abad-García B. Fresnedo O. Barreda-Gómez G. Aspichueta P. Asumendi A. Astigarraga E. Fernández J.A. Boyano M.D. Ochoa B. A uhplc-mass spectrometry view of human melanocytic cells uncovers potential lipid biomarkers of melanoma. Int. J. Mol. Sci. 2021 22 21 12061 10.3390/ijms222112061 34769491
    [Google Scholar]
  62. Lobasso S. Tanzarella P. Mannavola F. Tucci M. Silvestris F. Felici C. Ingrosso C. Corcelli A. Lopalco P. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front. Physiol. 2021 12 748895 10.3389/fphys.2021.748895 34867454
    [Google Scholar]
  63. Kurabe N. Suzuki M. Inoue Y. Kahyo T. Iwaizumi M. Konno H. Setou M. Sugimura H. Abstract 394A: Phosphatidylcholine-34:2 and -36:4 have tumor suppressive function for gastric cancer. Cancer Res. 2016 76 14 Supplement 394A 94A 10.1158/1538‑7445.AM2016‑394A
    [Google Scholar]
  64. Bednarczyk K. Gawin M. Chekan M. Kurczyk A. Mrukwa G. Pietrowska M. Polanska J. Widlak P. Discrimination of normal oral mucosa from oral cancer by mass spectrometry imaging of proteins and lipids. J. Mol. Histol. 2019 50 1 1 10 10.1007/s10735‑018‑9802‑3 30390197
    [Google Scholar]
  65. Bernardo R.A. de Oliveira Júnior C.I. Roque J.V. Costa N.L. Roriz V.M. Sorgi C.A. Janfelt C. Vaz B.G. Chaves A.R. Oral squamous cell carcinoma lipid evaluation in gingiva tissue stored in trizol via shotgun lipidomics and maldi mass spectrometry imaging. J. Proteome Res. 2024 23 8 2750 2761 10.1021/acs.jproteome.3c00216 37830917
    [Google Scholar]
  66. Vecchi L. Araújo T.G. Azevedo F.V.P.V. Mota S.T.S. Ávila V.M.R. Ribeiro M.A. Goulart L.R. Phospholipase a2 drives tumorigenesis and cancer aggressiveness through its interaction with annexin a1. Cells 2021 10 6 1472 10.3390/cells10061472 34208346
    [Google Scholar]
  67. Lue H. Podolak J. Kolahi K. Cheng L. Rao S. Garg D. Xue C.H. Rantala J.K. Tyner J.W. Thornburg K.L. Martinez-Acevedo A. Liu J.J. Amling C.L. Truillet C. Louie S.M. Anderson K.E. Evans M.J. O’Donnell V.B. Nomura D.K. Drake J.M. Ritz A. Thomas G.V. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev. 2017 31 20 2067 2084 10.1101/gad.305292.117 29138276
    [Google Scholar]
  68. Chen L.C. Huang S.P. Shih C.T. Li C.Y. Chen Y.T. Huang C.Y. Yu C.C. Lin V.C. Lee C.H. Geng J.H. Bao B.Y. ATP8B1: A prognostic prostate cancer biomarker identified via genetic analysis. Prostate 2023 83 6 602 611 10.1002/pros.24495 36794287
    [Google Scholar]
  69. Butler L.M. Mah C.Y. Dehairs J. Vincent A. Mutuku S. Spotbeen X. Das R. Nassar Z. Selth L. Trim P. Snel M. Lynn D. Horvath L. Tilley W. Centenera M. Swinnen J. Abstract 2076: Phospholipid profiling of clinical prostate tissues reveals targetable alterations in membrane lipid composition accompanying tumorigenesis. Cancer Res. 2020 80 16 Supplement 2076 76 10.1158/1538‑7445.AM2020‑2076
    [Google Scholar]
  70. Centenera M.M. Scott J.S. Machiels J. Nassar Z.D. Miller D.C. Zinonos I. Dehairs J. Burvenich I.J.G. Zadra G. Chetta P.M. Bango C. Evergren E. Ryan N.K. Gillis J.L. Mah C.Y. Tieu T. Hanson A.R. Carelli R. Bloch K. Panagopoulos V. Waelkens E. Derua R. Williams E.D. Evdokiou A. Cifuentes-Rius A. Voelcker N.H. Mills I.G. Tilley W.D. Scott A.M. Loda M. Selth L.A. Swinnen J.V. Butler L.M. Elovl5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 2021 81 7 1704 1718 10.1158/0008‑5472.CAN‑20‑2511 33547161
    [Google Scholar]
  71. Hasegawa J. New insights into the regulation and roles of phosphatidylinositol 3,4-bisphosphate. J. Biochem. 2024 176 5 339 345 10.1093/jb/mvae063 39271134
    [Google Scholar]
  72. Li J. Ren S. Piao H. Wang F. Yin P. Xu C. Lu X. Ye G. Shao Y. Yan M. Zhao X. Sun Y. Xu G. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci. Rep. 2016 6 1 20984 10.1038/srep20984 26865432
    [Google Scholar]
  73. Dória M.L. Cotrim Z. Macedo B. Simões C. Domingues P. Helguero L. Domingues M.R. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res. Treat. 2012 133 2 635 648 10.1007/s10549‑011‑1823‑5 22037781
    [Google Scholar]
  74. Margolis M. Perez O. Martinez M. Santander A.M. Mendez A.J. Nadji M. Nayer A. Bhattacharya S. Torroella-Kouri M. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study. Biochimie 2015 108 133 139 10.1016/j.biochi.2014.11.009 25450252
    [Google Scholar]
  75. Merchant T.E. Kasimos J.N. Vroom T. de Bree E. Iwata J.L. de Graaf P.W. Glonek T. Malignant breast tumor phospholipid profiles using 31P magnetic resonance. Cancer Lett. 2002 176 2 159 167 10.1016/S0304‑3835(01)00780‑7 11804743
    [Google Scholar]
  76. Punnonen K. Hietanen E. Auvinen O. Punnonen R. Phospholipids and fatty acids in breast cancer tissue. J. Cancer Res. Clin. Oncol. 1989 115 6 575 578 10.1007/BF00391361 2606932
    [Google Scholar]
  77. Katz-Brull R. Seger D. Rivenson-Segal D. Rushkin E. Degani H. Metabolic markers of breast cancer: Enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002 62 7 1966 1970 11929812
    [Google Scholar]
  78. Koch J. Lackner K. Wohlfarter Y. Sailer S. Zschocke J. Werner E.R. Watschinger K. Keller M.A. Unequivocal mapping of molecular ether lipid species by lc–ms/ms in plasmalogen-deficient mice. Anal. Chem. 2020 92 16 11268 11276 10.1021/acs.analchem.0c01933 32692545
    [Google Scholar]
  79. Wang J. Ma F. Sun X. Wang J. Guo F. Liu B. Wang W. Li Q. Xu B. Peripheral lipidomics analyses with ensemble machine learning predict response to neoadjuvant therapy in breast cancer. J. Clin. Oncol. 2022 40 16 Supplement 582 10.1200/JCO.2022.40.16_suppl.582
    [Google Scholar]
  80. Mori N. Wildes F. Kakkad S. Jacob D. Solaiyappan M. Glunde K. Bhujwalla Z.M. Choline kinase-α protein and phosphatidylcholine but not phosphocholine are required for breast cancer cell survival. NMR Biomed. 2015 28 12 1697 1706 10.1002/nbm.3429 26503172
    [Google Scholar]
  81. Chen Y. Rodrik V. Foster D.A. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene 2005 24 4 672 679 10.1038/sj.onc.1208099 15580312
    [Google Scholar]
  82. Jarc E. Kump A. Malavašič P. Eichmann T.O. Zimmermann R. Petan T. Lipid droplets induced by secreted phospholipase A 2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018 1863 3 247 265 10.1016/j.bbalip.2017.12.006 29229414
    [Google Scholar]
  83. Banerjee R. Preetha A. Huilgol N. Surface activity, lipid profiles and their implications in cervical cancer. J. Cancer Res. Ther. 2005 1 3 180 186 10.4103/0973‑1482.19600 17998650
    [Google Scholar]
  84. Park J.B. Lee C.S. Jang J.H. Ghim J. Kim Y.J. You S. Hwang D. Suh P.G. Ryu S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer 2012 12 11 782 792 10.1038/nrc3379 23076158
    [Google Scholar]
  85. Hou S. Grillo D. Williams C.L. Wasserstrom J.A. Szleifer I. Zhao M. Membrane phospholipid redistribution in cancer micro‐particles and implications in the recruitment of cationic protein factors. J. Extracell. Vesicles 2014 3 1 22653 10.3402/jev.v3.22653 24959330
    [Google Scholar]
  86. Cheng F. Wen Z. Feng X. Wang X. Chen Y. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer. Life Sci. 2020 260 118489 10.1016/j.lfs.2020.118489 32976882
    [Google Scholar]
  87. Lu Y. He X. Fang X. Chai N. Xu F. A novel lipid metabolism-related lncRNA signature predictive of clinical prognosis in cervical cancer. Front. Genet. 2022 13 1001347 10.3389/fgene.2022.1001347 36324514
    [Google Scholar]
  88. Hung C.Y. Chao A. Wang C.C. Wu R.C. Lu K.Y. Lu H.Y. Lai C.H. Lin G. Glycerophospholipids and sphingolipids correlate with poor prognostic genotypes of human papillomavirus in cervical cancer: Global lipidomics analysis. Anal. Methods 2018 10 41 4970 4977 10.1039/C8AY01691G
    [Google Scholar]
  89. Neves A.C.O. Morais C.L.M. Mendes T.P.P. Vaz B.G. Lima K.M.G. Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: An untargeted lipidomic study. Sci. Rep. 2018 8 1 3954 10.1038/s41598‑018‑22317‑6 29500376
    [Google Scholar]
  90. Montoya-Gómez A. Tonello F. Spolaore B. Massimino M.L. Montealegre-Sánchez L. Castillo A. Rivera Franco N. Sevilla-Sánchez M.J. Solano-Redondo L.M. Mosquera-Escudero M. Jiménez-Charris E. Pllans− ii: Unveiling the action mechanism of a promising chemotherapeutic agent targeting cervical cancer cell adhesion and survival pathways. Cells 2023 12 23 2715 10.3390/cells12232715 38067143
    [Google Scholar]
  91. Souza J.L. Martins-Cardoso K. Guimarães I.S. de Melo A.C. Lopes A.H. Monteiro R.Q. Almeida V.H. Interplay between egfr and the platelet-activating factor/paf receptor signaling axis mediates aggressive behavior of cervical cancer. Front. Oncol. 2020 10 557280 10.3389/fonc.2020.557280 33392068
    [Google Scholar]
  92. da Silva-Junior I.A. Dalmaso B. Herbster S. Lepique A.P. Jancar S. Platelet-activating factor receptor ligands protect tumor cells from radiation-induced cell death. Front. Oncol. 2018 8 10 10.3389/fonc.2018.00010 29459885
    [Google Scholar]
  93. Bleve S. Ravera F. Rodrigues S. Omar M. Giunta E.F. Pederzoli F. Pakula H. Altavilla A. Brighi N. Gurioli G. Lipidomic profiling as a biomarker for prostate cancer diagnosis and response to enzalutamide (enza). J. Clin. Oncol. 2024 42 4 217 10.1200/JCO.2024.42.4_suppl.217
    [Google Scholar]
  94. Chen X. Zhu Y. Jijiwa M. Nasu M. Ai J. Dai S. Jiang B. Zhang J. Huang G. Deng Y. Identification of plasma lipid species as promising diagnostic markers for prostate cancer. BMC Med. In-form. Decis. Mak 2020 20 S9 223 (Suppl. 9) 10.1186/s12911‑020‑01242‑7 32967667
    [Google Scholar]
  95. Zhou X. Mao J. Ai J. Deng Y. Roth M.R. Pound C. Henegar J. Welti R. Bigler S.A. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One 2012 7 11 e48889 10.1371/journal.pone.0048889 23152813
    [Google Scholar]
  96. Skotland T. Ekroos K. Kauhanen D. Simolin H. Seierstad T. Berge V. Sandvig K. Llorente A. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer 2017 70 122 132 10.1016/j.ejca.2016.10.011 27914242
    [Google Scholar]
  97. Buszewska-Forajta M. Pomastowski P. Monedeiro F. Walczak-Skierska J. Markuszewski M. Matuszewski M. Markuszewski M.J. Buszewski B. Lipidomics as a diagnostic tool for prostate cancer. Cancers 2021 13 9 2000 10.3390/cancers13092000 33919225
    [Google Scholar]
  98. Noble A.R. Maitland N.J. Berney D.M. Rumsby M.G. Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. Br. J. Cancer 2018 118 2 189 199 10.1038/bjc.2017.391 29136407
    [Google Scholar]
  99. Utter M. Chakraborty S. Goren L. Feuser L. Zhu Y.S. Foster D.A. Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes. Cancer Lett. 2018 423 28 35 10.1016/j.canlet.2018.03.006 29524555
    [Google Scholar]
  100. Jeong R.U. Lim S. Kim M.O. Moon M.H. Effect of d-allose on prostate cancer cell lines: Phospholipid profiling by nanoflow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2011 401 2 689 698 10.1007/s00216‑011‑5113‑1 21633842
    [Google Scholar]
  101. Finnerty M. Ingram L. Cummings B. Lipin expression correlates to differences in phospholipid profiles in prostate cancer progression. FASEB J. 2021 35 S1 fasebj.2021.35.S1.02291
    [Google Scholar]
  102. Ingram L.M. Manosoura M. Pati S. Cummings B.S. Phospholipids as indicators of castration resistant prostate cancer. Faseb J. 2018 32 S1 10.1096/fasebj.2018.32.1_supplement.658.2
    [Google Scholar]
  103. Piyarathna D.W.B. Rajendiran T.M. Putluri V. Vantaku V. Soni T. von Rundstedt F.C. Donepudi S.R. Jin F. Maity S. Ambati C.R. Dong J. Gödde D. Roth S. Störkel S. Degener S. Michailidis G. Lerner S.P. Pennathur S. Lotan Y. Coarfa C. Sreekumar A. Putluri N. Distinct lipidomic landscapes associated with clinical stages of urothelial cancer of the bladder. Eur. Urol. Focus 2018 4 6 907 915 10.1016/j.euf.2017.04.005 28753886
    [Google Scholar]
  104. Nagumo Y. Kandori S. Tanuma K. Nitta S. Chihara I. Shiga M. Hoshi A. Negoro H. Kojima T. Mathis B.J. Funakoshi Y. Nishiyama H. PLD1 promotes tumor invasion by regulation of MMP-13 expression via NF-κB signaling in bladder cancer. Cancer Lett. 2021 511 15 25 10.1016/j.canlet.2021.04.014 33945837
    [Google Scholar]
  105. Dobrzyńska I. Szachowicz-Petelska B. Darewicz B. Figaszewski Z.A. Characterization of human bladder cell membrane during cancer transformation. J. Membr. Biol. 2015 248 2 301 307 10.1007/s00232‑015‑9770‑4 25572835
    [Google Scholar]
  106. Zeng F. Lan Y. Wang N. Huang X. Zhou Q. Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front. Pharmacol. 2022 13 1043283 10.3389/fphar.2022.1043283 36408230
    [Google Scholar]
  107. di Meo N.A. Lasorsa F. Rutigliano M. Milella M. Ferro M. Battaglia M. Ditonno P. Lucarelli G. The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. Expert Rev. Mol. Diagn. 2023 23 4 297 313 10.1080/14737159.2023.2195553 36960789
    [Google Scholar]
  108. Guo C. Trivedi R. Tripathi A.K. Nandy R.R. Wagner D.C. Narra K. Chaudhary P. Higher expression of annexin a2 in metastatic bladder urothelial carcinoma promotes migration and invasion. Cancers 2022 14 22 5664 10.3390/cancers14225664 36428758
    [Google Scholar]
  109. Yalcin A. Clem B. Makoni S. Clem A. Nelson K. Thornburg J. Siow D. Lane A.N. Brock S.E. Goswami U. Eaton J.W. Telang S. Chesney J. Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. Oncogene 2010 29 1 139 149 10.1038/onc.2009.317 19855431
    [Google Scholar]
  110. Shahid M. Yeon A. Kim J. Metabolomic and lipidomic approaches to identify biomarkers for bladder cancer and interstitial cystitis. (Review) Mol. Med. Rep. 2020 22 6 5003 5011 10.3892/mmr.2020.11627 33174036
    [Google Scholar]
  111. Shin K.J. Jang H.J. Lee Y.J. Lee Y.G. Suh P.G. Yang Y.R. Chae Y.C. Phospholipase Cγ1 represses colorectal cancer growth by inhibiting the Wnt/β-catenin signaling axis. Biochem. Biophys. Res. Commun. 2021 577 103 109 10.1016/j.bbrc.2021.09.012 34509721
    [Google Scholar]
  112. Deng L. Niu G.M. Ren J. Ke C.W. Identification of atp8b1 as a tumor suppressor gene for colorectal cancer and its involvement in phospholipid homeostasis. BioMed Res. Int. 2020 2020 1 2015648 10.1155/2020/2015648 33062669
    [Google Scholar]
  113. Elmallah M.I.Y. Ortega-Deballon P. Hermite L. Pais-De-Barros J.P. Gobbo J. Garrido C. Lipidomic profiling of exosomes from colorectal cancer cells and patients reveals potential biomarkers. Mol. Oncol. 2022 16 14 2710 2718 10.1002/1878‑0261.13223 35524452
    [Google Scholar]
  114. Zhang Y. Liu Y. Li L. Wei J. Xiong S. Zhao Z. High resolution mass spectrometry coupled with multivariate data analysis revealing plasma lipidomic alteration in ovarian cancer in Asian women. Talanta 2016 150 88 96 10.1016/j.talanta.2015.12.021 26838385
    [Google Scholar]
  115. Bestard-Escalas J. Reigada R. Reyes J. de la Torre P. Liebisch G. Barceló-Coblijn G. Fatty acid unsaturation degree of plasma exosomes in colorectal cancer patients: A promising biomarker. Int. J. Mol. Sci. 2021 22 10 5060 10.3390/ijms22105060 34064646
    [Google Scholar]
  116. Li R. Hao Y. Wang Q. Meng Y. Wu K. Liu C. Xu L. Liu Z. Zhao L. ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation. Cell Death Dis. 2021 12 10 911 10.1038/s41419‑021‑04213‑6 34615856
    [Google Scholar]
  117. Das S. Martinez L.R. Ray S. Phospholipid remodeling and eicosanoid signaling in colon cancer cells. Indian J. Biochem. Biophys. 2014 51 6 512 519 25823224
    [Google Scholar]
  118. Mika A. Pakiet A. Czumaj A. Kaczynski Z. Liakh I. Kobiela J. Perdyan A. Adrych K. Makarewicz W. Sledzinski T. Decreased triacylglycerol content and elevated contents of cell membrane lipids in colorectal cancer tissue: A lipidomic study. J. Clin. Med. 2020 9 4 1095 10.3390/jcm9041095 32290558
    [Google Scholar]
  119. Lu H. Zhang H. Xiao Y. Chingin K. Dai C. Wei F. Wang N. Frankevich V. Chagovets V. Zhou F. Chen H. Comparative study of alterations in phospholipid profiles upon liver cancer in humans and mice. Analyst (Lond.) 2020 145 20 6470 6477 10.1039/D0AN01080D 32856629
    [Google Scholar]
  120. Liu Z. Zhang Z. Mei H. Mao J. Zhou X. Distribution and clinical relevance of phospholipids in hepatocellular carcinoma. Hepatol. Int. 2020 14 4 544 555 10.1007/s12072‑020‑10056‑8 32504407
    [Google Scholar]
  121. Kwee S.A. Franke A.A. Custer L.J. Li X. Wong L.L. Abstract 1486: Fatty acid and phospholipid profiling of liver tumor tissue: correlation with in vivo molecular PET imaging of phosphocholine synthesis. Cancer Res. 2015 75 15 Supplement 1486 86 10.1158/1538‑7445.AM2015‑1486
    [Google Scholar]
  122. She S. Zhang Q. Shi J. Yang F. Dai K. Roles of autotaxin/autotaxin-lysophosphatidic acid axis in the initiation and progression of liver cancer. Front. Oncol. 2022 12 922945 10.3389/fonc.2022.922945 35769713
    [Google Scholar]
  123. Martín-Sierra C. Colombo S. Martins R. Laranjeira P. Melo T. Abrantes A.M. Oliveira R.C. Tralhão J.G. Botelho M.F. Furtado E. Domingues P. Domingues M.R. Paiva A. Tumor resection induces alterations on serum phospholipidome of liver cancer patients. Lipids 2020 55 2 185 191 10.1002/lipd.12221 32045496
    [Google Scholar]
  124. Evangelista E.B. Kwee S.A. Sato M.M. Wang L. Rettenmeier C. Xie G. Jia W. Wong L.L. Phospholipids are a potentially important source of tissue biomarkers for hepatocellular carcinoma: Results of a pilot study involving targeted metabolomics. Diagnostics 2019 9 4 167 10.3390/diagnostics9040167 31671805
    [Google Scholar]
  125. Pervaiz A. Nasim M. Shafiq N. Berger M.R. Abstract A025: Cytostatic effects and expression modulations in cell cycle genes by a 3rd generation alkyl-phospholipid (erufosine) in liver and lung cancer cells. Mol. Cancer Ther. 2023 22 12 Supplement A025 A25 10.1158/1535‑7163.TARG‑23‑A025
    [Google Scholar]
  126. Zhou J. Han Y. Yang Y. Zhang L. Wang H. Shen Y. Lai J. Chen J. Phospholipid-decorated glycogen nanoparticles for stimuli-responsive drug release and synergetic chemophotothermal therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2020 12 20 23311 23322 10.1021/acsami.0c02785 32349481
    [Google Scholar]
  127. Cotte A.K. Cottet V. Aires V. Mouillot T. Rizk M. Vinault S. Binquet C. de Barros J.P.P. Hillon P. Delmas D. Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. Oncotarget 2019 10 22 2161 2172 10.18632/oncotarget.26738 31040908
    [Google Scholar]
  128. Alannan M. Fatrouni H. Trézéguet V. Dittrich-Domergue F. Moreau P. Siegfried G. Liet B. Khatib A.M. Grosset C.F. Badran B. Fayyad-Kazan H. Merched A.J. Targeting pcsk9 in liver cancer cells triggers metabolic exhaustion and cell death by ferroptosis. Cells 2022 12 1 62 10.3390/cells12010062 36611859
    [Google Scholar]
  129. Kaffe E. Magkrioti C. Aidinis V. Deregulated lysophosphatidic acid metabolism and signaling in liver cancer. Cancers 2019 11 11 1626 10.3390/cancers11111626 31652837
    [Google Scholar]
  130. Cai M. He J. Xiong J. Tay L.W.R. Wang Z. Rog C. Wang J. Xie Y. Wang G. Banno Y. Li F. Zhu M. Du G. Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells. Cell Death Dis. 2016 7 11 e2448 e48 10.1038/cddis.2016.355 27809301
    [Google Scholar]
  131. Pal’mina N.P. Mal’tseva E.L. Phospholipid composition of liver and Ehrlich ascites carcinoma cell nuclei during tumor growth and after irradiation of tumor hosts. Biokhimiia 1982 47 1 115 125 7066414
    [Google Scholar]
  132. Marien E. Meister M. Muley T. Fieuws S. Bordel S. Derua R. Spraggins J. Van de Plas R. Dehairs J. Wouters J. Bagadi M. Dienemann H. Thomas M. Schnabel P.A. Caprioli R.M. Waelkens E. Swinnen J.V. Non‐small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int. J. Cancer 2015 137 7 1539 1548 10.1002/ijc.29517 25784292
    [Google Scholar]
  133. Lesko J. Triebl A. Stacher-Priehse E. Fink-Neuböck N. Lindenmann J. Smolle-Jüttner F.M. Köfeler H.C. Hrzenjak A. Olschewski H. Leithner K. Phospholipid dynamics in ex vivo lung cancer and normal lung explants. Exp. Mol. Med. 2021 53 1 81 90 10.1038/s12276‑020‑00547‑x 33408336
    [Google Scholar]
  134. Leithner K. Triebl A. Trötzmüller M. Hinteregger B. Leko P. Wieser B.I. Grasmann G. Bertsch A.L. Züllig T. Stacher E. Valli A. Prassl R. Olschewski A. Harris A.L. Köfeler H.C. Olschewski H. Hrzenjak A. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proc. Natl. Acad. Sci. USA 2018 115 24 6225 6230 10.1073/pnas.1719871115 29844165
    [Google Scholar]
  135. Salucci S. Aramini B. Bartoletti-Stella A. Versari I. Martinelli G. Blalock W. Stella F. Faenza I. Phospholipase family enzymes in lung cancer: Looking for novel therapeutic approaches. Cancers 2023 15 12 3245 10.3390/cancers15123245 37370855
    [Google Scholar]
  136. Magkrioti C. Oikonomou N. Kaffe E. Mouratis M.A. Xylourgidis N. Barbayianni I. Megadoukas P. Harokopos V. Valavanis C. Chun J. Kosma A. Stathopoulos G.T. Bouros E. Bouros D. Syrigos K. Aidinis V. The autotaxin—lysophosphatidic acid axis promotes lung carcinogenesis. Cancer Res. 2018 78 13 3634 3644 10.1158/0008‑5472.CAN‑17‑3797 29724718
    [Google Scholar]
  137. Zhang X. Zhang L. Lin B. Chai X. Li R. Liao Y. Deng X. Liu Q. Yang W. Cai Y. Zhou W. Lin Z. Huang W. Zhong M. Lei F. Wu J. Yu S. Li X. Li S. Li Y. Zeng J. Long W. Ren D. Huang Y. Phospholipid Phosphatase 4 promotes proliferation and tumorigenesis, and activates Ca 2+ -permeable Cationic Channel in lung carcinoma cells. Mol. Cancer 2017 16 1 147 10.1186/s12943‑017‑0717‑5 28851360
    [Google Scholar]
  138. Schneider G. Sellers Z.P. Bujko K. Kakar S.S. Kucia M. Ratajczak M.Z. Novel pleiotropic effects of bioactive phospholipids in human lung cancer metastasis. Oncotarget 2017 8 35 58247 58263 10.18632/oncotarget.17461 28938552
    [Google Scholar]
  139. Marien E. Meister M. Muley T. del Pulgar T.G. Derua R. Spraggins J.M. Van de Plas R. Vanderhoydonc F. Machiels J. Binda M.M. Dehairs J. Willette-Brown J. Hu Y. Dienemann H. Thomas M. Schnabel P.A. Caprioli R.M. Lacal J.C. Waelkens E. Swinnen J.V. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget 2016 7 11 12582 12597 10.18632/oncotarget.7179 26862848
    [Google Scholar]
  140. Klupczynska A. Plewa S. Kasprzyk M. Dyszkiewicz W. Kokot Z.J. Matysiak J. Serum lipidome screening in patients with stage I non-small cell lung cancer. Clin. Exp. Med. 2019 19 4 505 513 10.1007/s10238‑019‑00566‑7 31264112
    [Google Scholar]
  141. Sen O. Sarkar P. Das S. Giri N.K. Sarkar S. Jana S. Nandi G. Manna S. Membrane permeability and drug targeting potential of phospholipid‐based nanocarriers in lung cancer therapy. ChemistrySelect 2024 9 40 e202403174 10.1002/slct.202403174
    [Google Scholar]
  142. Chen Y. Ma Z. Shen X. Li L. Zhong J. Min L.S. Xu L. Li H. Zhang J. Dai L. Serum lipidomics profiling to identify biomarkers for non‐small cell lung cancer. BioMed Res. Int. 2018 2018 1 16 10.1155/2018/5276240 30175133
    [Google Scholar]
  143. Hu C. Chen L. Fan Y. Lin Z. Tang X. Xu Y. Zeng Y. Hu Z. The landscape of lipid metabolism in lung cancer: The role of structural profiling. J. Clin. Med. 2023 12 5 1736 10.3390/jcm12051736 36902523
    [Google Scholar]
  144. Yu Z. Chen H. Ai J. Zhu Y. Li Y. Borgia J.A. Yang J.S. Zhang J. Jiang B. Gu W. Deng Y. Global lipidomics identified plasma lipids as novel biomarkers for early detection of lung cancer. Oncotarget 2017 8 64 107899 107906 10.18632/oncotarget.22391 29296211
    [Google Scholar]
  145. Guo Y. Zhao Q. Tian Y. Liu Y. Yan Z. Xue C. Wang J. Study on the effects of the different polar group of EPA-enriched phospholipids on the proliferation and apoptosis in 95D cells. Mar. Life Sci. Technol. 2021 3 4 519 528 10.1007/s42995‑021‑00097‑9 37073266
    [Google Scholar]
  146. Geng P. Zhao J. Li Q. Wang X. Qin W. Wang T. Shi X. Liu X. Chen J. Qiu H. Xu G. Z-ligustilide combined with cisplatin reduces plpp1-mediated phospholipid synthesis to impair cisplatin resistance in lung cancer. Int. J. Mol. Sci. 2023 24 23 17046 10.3390/ijms242317046 38069368
    [Google Scholar]
  147. Pellerin L. Carrié L. Dufau C. Nieto L. Ségui B. Levade T. Riond J. Andrieu-Abadie N. Lipid metabolic reprogramming: Role in melanoma progression and therapeutic perspectives. Cancers 2020 12 11 3147 10.3390/cancers12113147 33121001
    [Google Scholar]
  148. Ferreira A.K. Meneguelo R. Marques F.L.N. Radin A. Filho O.M.R. Neto S.C. Chierice G.O. Maria D.A. Synthetic phosphoethanolamine a precursor of membrane phospholipids reduce tumor growth in mice bearing melanoma B16-F10 and in vitro induce apoptosis and arrest in G2/M phase. Biomed. Pharmacother. 2012 66 7 541 548 10.1016/j.biopha.2012.04.008 22902646
    [Google Scholar]
  149. Ferreira A.K. Meneguelo R. Neto S.C. Chierice G.O. Maria D.A. Synthetic phosphoethanolamine induces apoptosis through caspase-3pathway by decreasing expression of bax/bad protein and changes cellcycle in melanoma. J. Cancer Sci. Ther. 2011 3 3 53 59 10.4172/1948‑5956.1000058
    [Google Scholar]
  150. Urbanelli L. Buratta S. Logozzi M. Mitro N. Sagini K. Raimo R.D. Caruso D. Fais S. Emiliani C. Lipidomic analysis of cancer cells cultivated at acidic pH reveals phospholipid fatty acids remodelling associated with transcriptional reprogramming. J. Enzyme Inhib. Med. Chem. 2020 35 1 963 973 10.1080/14756366.2020.1748025 32308048
    [Google Scholar]
  151. Carrié L. Virazels M. Dufau C. Montfort A. Levade T. Ségui B. Andrieu-Abadie N. New insights into the role of sphingolipid metabolism in melanoma. Cells 2020 9 9 1967 10.3390/cells9091967 32858889
    [Google Scholar]
  152. Capoferri D. Mignani L. Manfredi M. Presta M. Proteomic analysis highlights the impact of the sphingolipid metabolizing enzyme β-galactosylceramidase on mitochondrial plasticity in human melanoma. Int. J. Mol. Sci. 2024 25 5 3062 10.3390/ijms25053062 38474307
    [Google Scholar]
  153. Laudonio N. Marcocci L. Arancia G. Calcabrini A. Del Bufalo D. Greco C. Zupi G. Mavelli I. Pedersen J.Z. Bozzi A. Enhancement of hyperthermic damage on M14 melanoma cells by liposome pretreatment. Cancer Res. 1990 50 16 5119 5126 2165856
    [Google Scholar]
  154. Budhu S. Giese R. Gupta A. Fitzgerald K. Zappasodi R. Schad S. Hirschhorn D. Campesato L.F. De Henau O. Gigoux M. Liu C. Mazo G. Deng L. Barker C.A. Wolchok J.D. Merghoub T. Targeting phosphatidylserine enhances the anti-tumor response to tumor-directed radiation therapy in a preclinical model of melanoma. Cell Rep. 2021 34 2 108620 10.1016/j.celrep.2020.108620 33440157
    [Google Scholar]
  155. Budhu S. Henau O.D. Zappasodi R. Giese R. Campesato L.F. Barker C. Freimark B. Hutchins J. Wolchok J.D. Merghoub T. Abstract 574: Phosphatidylserine targeting antibody in combination with tumor radiation and immune checkpoint blockade promotes anti-tumor activity in mouse B16 melanoma. Cancer Res. 2017 77 13 Supplement 574 74 10.1158/1538‑7445.AM2017‑574
    [Google Scholar]
  156. Morvan D. Demidem A. Madelmont J.C. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: A high resolution proton NMR spectroscopy study. Pathol. Biol. 2003 51 5 256 259 10.1016/S0369‑8114(03)00071‑3 14567189
    [Google Scholar]
  157. Mathews T.P. Muh S. Aurora A.B. Morrison S.J. Abstract PR017: Differences in melanoma lipid metabolism among distinct metastatic sites. Cancer Res. 2023 83 2 Supplement 2 PR017 PR17 10.1158/1538‑7445.METASTASIS22‑PR017
    [Google Scholar]
  158. Yamada T. Yano S. Ogino H. Ikuta K. Kakiuchi S. Hanibuchi M. Kanematsu T. Taniguchi T. Sekido Y. Sone S. Lysophosphatidic acid stimulates the proliferation and motility of malignant pleural mesothelioma cells through lysophosphatidic acid receptors, LPA 1 and LPA 2. Cancer Sci. 2008 99 8 1603 1610 10.1111/j.1349‑7006.2008.00848.x 18754873
    [Google Scholar]
  159. Kakiuchi T. Takahara T. Kasugai Y. Arita K. Yoshida N. Karube K. Suguro M. Matsuo K. Nakanishi H. Kiyono T. Nakamura S. Osada H. Sekido Y. Seto M. Tsuzuki S. Modeling mesothelioma utilizing human mesothelial cells reveals involvement of phospholipase-C beta 4 in YAP-active mesothelioma cell proliferation. Carcinogenesis 2016 37 11 1098 1109 10.1093/carcin/bgw084 27559111
    [Google Scholar]
  160. Mills G.B. Moolenaar W.H. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer 2003 3 8 582 591 10.1038/nrc1143 12894246
    [Google Scholar]
  161. Aiello S. Casiraghi F. Lysophosphatidic acid: Promoter of cancer progression and of tumor microenvironment development. A promising target for anticancer therapies? Cells 2021 10 6 1390 10.3390/cells10061390 34200030
    [Google Scholar]
  162. Kaku Y. Tsuchiya A. Kanno T. Nakano T. Nishizaki T. Dipalmitoleoyl-phosphatidylethanolamine induces apoptosis of NCI-H28 malignant mesothelioma cells. Anticancer Res. 2014 34 4 1759 1764 24692707
    [Google Scholar]
  163. Jansen M. Treutner K.H. Jansen P.L. Zuber S. Otto J. Tietze L. Schumpelick V. Inhibition of gastric cancer cell adhesion in nude mice by inraperitoneal phospholipids. World J. Surg. 2005 29 6 708 714 10.1007/s00268‑005‑7583‑9 15895297
    [Google Scholar]
  164. Shen Y. Hu Y. Qiu L. Nano-vesicles based on phospholipid-like amphiphilic polyphosphazenes to orally deliver ovalbumin antigen for evoking anti-tumor immune response. Acta Biomater. 2020 106 267 277 10.1016/j.actbio.2020.02.012 32058081
    [Google Scholar]
  165. Bastías D. Maturana A. Marín C. Martínez R. Niklander S.E. Salivary biomarkers for oral cancer detection: An exploratory systematic review. Int. J. Mol. Sci. 2024 25 5 2634 10.3390/ijms25052634 38473882
    [Google Scholar]
  166. Joo N.E. Ritchie K. Maio D. Kamarajan P. Kapila Y. Abstract 4601: Nisin, an apoptogenic bacteriocin, modulates oral cancer growth. Cancer Res. 2011 71 8 Supplement 4601 01 10.1158/1538‑7445.AM2011‑4601
    [Google Scholar]
  167. Araújo R. Fabris V. Lamb C.A. Elía A. Lanari C. Helguero L.A. Gil A.M. Tumor lipid signatures are descriptive of acquisition of therapy resistance in an endocrine-related breast cancer mouse model. J. Proteome Res. 2024 23 8 2815 2829 10.1021/acs.jproteome.3c00382 37497607
    [Google Scholar]
  168. Yu Z. Zhou Y. Li Y. Dong Z. RETRACTED ARTICLE: Integration of clinical and spatial data to explore lipid metabolism-related genes for predicting prognosis and immune microenvironment in gliomas. Funct. Integr. Genomics 2023 23 2 82 10.1007/s10142‑023‑01010‑6 36929451
    [Google Scholar]
  169. Stefanko A. Thiede C. Ehninger G. Simons K. Grzybek M. Lipidomic approach for stratification of acute myeloid leukemia patients. PLoS One 2017 12 2 e0168781 10.1371/journal.pone.0168781 28207743
    [Google Scholar]
  170. Fernández L.P. Gómez de Cedrón M. Ramírez de Molina A. Alterations of lipid metabolism in cancer: Implications in prognosis and treatment. Front. Oncol. 2020 10 577420 10.3389/fonc.2020.577420 33194695
    [Google Scholar]
  171. Swierczynski J. Hebanowska A. Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J. Gastroenterol. 2014 20 9 2279 2303 10.3748/wjg.v20.i9.2279 24605027
    [Google Scholar]
  172. Kim D.H. Song N.Y. Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch. Pharm. Res. 2023 46 11-12 855 881 10.1007/s12272‑023‑01473‑y 38060103
    [Google Scholar]
  173. Khan F. Elsori D. Verma M. Pandey S. Obaidur Rab S. Siddiqui S. Alabdallah N.M. Saeed M. Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front. Cell Dev. Biol. 2024 12 1399065 10.3389/fcell.2024.1399065 38933330
    [Google Scholar]
  174. Gouw A.M. Margulis K. Liu N.S. Raman S.J. Mancuso A. Toal G.G. Tong L. Mosley A. Hsieh A.L. Sullivan D.K. Stine Z.E. Altman B.J. Schulze A. Dang C.V. Zare R.N. Felsher D.W. The myc oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 2019 30 3 556 572.e5 10.1016/j.cmet.2019.07.012 31447321
    [Google Scholar]
  175. Bi J. Ichu T.A. Zanca C. Yang H. Zhang W. Gu Y. Chowdhry S. Reed A. Ikegami S. Turner K.M. Zhang W. Villa G.R. Wu S. Quehenberger O. Yong W.H. Kornblum H.I. Rich J.N. Cloughesy T.F. Cavenee W.K. Furnari F.B. Cravatt B.F. Mischel P.S. Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling. Cell Metab. 2019 30 3 525 538.e8 10.1016/j.cmet.2019.06.014 31303424
    [Google Scholar]
  176. Vanauberg D. Schulz C. Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: A promising target in anti-cancer therapies. Oncogenesis 2023 12 1 16 10.1038/s41389‑023‑00460‑8 36934087
    [Google Scholar]
  177. Gabitova-Cornell L. Surumbayeva A. Peri S. Franco-Barraza J. Restifo D. Weitz N. Ogier C. Goldman A.R. Hartman T.R. Francescone R. Tan Y. Nicolas E. Shah N. Handorf E.A. Cai K.Q. O’Reilly A.M. Sloma I. Chiaverelli R. Moffitt R.A. Khazak V. Fang C.Y. Golemis E.A. Cukierman E. Astsaturov I. Cholesterol pathway inhibition induces tgf-beta signaling to promote basal differentiation in pancreatic cancer. Cancer Cell 2020 38 4 567 583.e11 10.1016/j.ccell.2020.08.015 32976774
    [Google Scholar]
  178. Ray U. Roy S.S. Aberrant lipid metabolism in cancer cells – the role of oncolipid‐activated signaling. FEBS J. 2018 285 3 432 443 10.1111/febs.14281 28971574
    [Google Scholar]
  179. Zhang R. Peng X. Du J.X. Boohaker R. Estevao I.L. Grajeda B.I. Cox M.B. Almeida I.C. Lu W. Oncogenic krasg12d reprograms lipid metabolism by upregulating slc25a1 to drive pancreatic tumorigenesis. Cancer Res. 2023 83 22 3739 3752 10.1158/0008‑5472.CAN‑22‑2679 37695315
    [Google Scholar]
  180. Zou L. Guo L. Zhu C. Lai Z. Li Z. Yang A. Serum phospholipids are potential biomarkers for the early diagnosis of gastric cancer. Clin. Chim. Acta 2021 519 276 284 10.1016/j.cca.2021.05.002 33989614
    [Google Scholar]
  181. Kus K. Kij A. Zakrzewska A. Jasztal A. Stojak M. Walczak M. Chlopicki S. Alterations in arginine and energy metabolism, structural and signalling lipids in metastatic breast cancer in mice detected in plasma by targeted metabolomics and lipidomics. Breast Cancer Res. 2018 20 1 148 10.1186/s13058‑018‑1075‑y 30514398
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096398874250818210830
Loading
/content/journals/ccdt/10.2174/0115680096398874250818210830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test