Skip to content
2000
image of Comprehensive Immune Subtyping and Multi-Omics Profiling of the Tumor Microenvironment in Colorectal Cancer: Implications for Prognosis andPersonalized Immunotherapy

Abstract

Introduction

The Tumor microenvironment (TME) plays a crucial role in colorectal cancer (CRC) prognosis and treatment response. However, comprehensive understandings of TME-related immune subtypes and their mechanisms for precision medicine remain insufficient. This study aims to identify immune subtypes in CRC, develop a prognostic model, and explore the role of microbial diversity in tumor progression.

Methods

Multi-omics data and non-negative matrix factorization (NMF) were used to classify CRC into immune subtypes. Differentially expressed TME-related genes were identified, and a prognostic risk model was developed using Cox and LASSO regression. Single-cell RNA sequencing (scRNA-seq) assessed cellular interactions and gene set variations. Microbiome profiling was integrated to evaluate the impact of microbial diversity on CRC progression and immune modulation. Key findings were validated using immunohistochemistry, external datasets, and qPCR in patient-derived organoids.

Results

Four TME-related immune subtypes were identified: immune-exhausted C1 (poor prognosis, high immune infiltration), immune-activated C2/C3 (better prognosis), and immune-desert C4 (worst prognosis). A risk model based on genes (SOX9, CLEC10A, RAB15, RAB6B, PCOLCE2, FUT1) stratified patients into high- and low-risk groups. High-risk groups exhibited increased Enterobacteriaceae and Clostridium, while low-risk groups showed higher Porphyromonadaceae and Peptostreptococcaceae, correlating with better immunotherapy responses. scRNA-seq revealed distinct cell-cell communication patterns across subtypes.

Discussion

The study highlights the complexity of CRC’s TME and its role in prognosis and treatment. Findings support personalized treatment strategies, considering immune and microbial factors.

Conclusion

This research integrates TME subtyping, risk modeling, single-cell analysis, and microbiome profiling to advance CRC prognosis and precision therapy, emphasizing personalized strategies for better outcomes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096395386250910130110
2025-09-26
2025-12-24
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096395386250910130110/BMS-CCDT-2025-95.html?itemId=/content/journals/ccdt/10.2174/0115680096395386250910130110&mimeType=html&fmt=ahah

References

  1. Morgan E. Arnold M. Gini A. Lorenzoni V. Cabasag C.J. Laversanne M. Vignat J. Ferlay J. Murphy N. Bray F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023 72 2 338 344 10.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  2. Khaliq A.M. Erdogan C. Kurt Z. Turgut S.S. Grunvald M.W. Rand T. Khare S. Borgia J.A. Hayden D.M. Pappas S.G. Govekar H.R. Kam A.E. Reiser J. Turaga K. Radovich M. Zang Y. Qiu Y. Liu Y. Fishel M.L. Turk A. Gupta V. Al-Sabti R. Subramanian J. Kuzel T.M. Sadanandam A. Waldron L. Hussain A. Saleem M. El-Rayes B. Salahudeen A.A. Masood A. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 2022 23 1 113 10.1186/s13059‑022‑02677‑z 35538548
    [Google Scholar]
  3. Wang H. Li Z. Ou S. Song Y. Luo K. Guan Z. Zhao L. Huang R. Yu S. Tumor microenvironment heterogeneity-based score system predicts clinical prognosis and response to immune checkpoint blockade in multiple colorectal cancer cohorts. Front. Mol. Biosci. 2022 9 884839 10.3389/fmolb.2022.884839 35836930
    [Google Scholar]
  4. Valdeolivas A. Amberg B. Giroud N. Richardson M. Gálvez E.JC. Badillo S. Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial transcriptomics. NPJ Precis. Oncol. 2024 8 1 10 10.1038/s41698‑023‑00488‑4 38200223
    [Google Scholar]
  5. Yoshihara K. Shahmoradgoli M. Martínez E. Vegesna R. Kim H. Torres-Garcia W. Treviño V. Shen H. Laird P.W. Levine D.A. Carter S.L. Getz G. Stemke-Hale K. Mills G.B. Verhaak R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013 4 1 2612 10.1038/ncomms3612 24113773
    [Google Scholar]
  6. Labani-Motlagh A. Ashja-Mahdavi M. Loskog A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front. Immunol. 2020 11 940 10.3389/fimmu.2020.00940 32499786
    [Google Scholar]
  7. Kaweme N.M. Zhou F. Optimizing N.K. Optimizing nk cell-based immunotherapy in myeloid leukemia: Abrogating an immunosuppressive microenvironment. Front. Immunol. 2021 12 683381 10.3389/fimmu.2021.683381 34220833
    [Google Scholar]
  8. Huang D. Ma N. Li X. Gou Y. Duan Y. Liu B. Xia J. Zhao X. Wang X. Li Q. Rao J. Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J. Hematol. Oncol. 2023 16 1 98 10.1186/s13045‑023‑01494‑6 37612741
    [Google Scholar]
  9. Sun Y. Wu L. Zhong Y. Zhou K. Hou Y. Wang Z. Zhang Z. Xie J. Wang C. Chen D. Huang Y. Wei X. Shi Y. Zhao Z. Li Y. Guo Z. Yu Q. Xu L. Volpe G. Qiu S. Zhou J. Ward C. Sun H. Yin Y. Xu X. Wang X. Esteban M.A. Yang H. Wang J. Dean M. Zhang Y. Liu S. Yang X. Fan J. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 2021 184 2 404 421.e16 10.1016/j.cell.2020.11.041 33357445
    [Google Scholar]
  10. Anagnostou V. Bardelli A. Chan T.A. Turajlic S. The status of tumor mutational burden and immunotherapy. Nat. Can. 2022 3 6 652 656 10.1038/s43018‑022‑00382‑1 35764740
    [Google Scholar]
  11. Le D.T. Uram J.N. Wang H. Bartlett B.R. Kemberling H. Eyring A.D. Skora A.D. Luber B.S. Azad N.S. Laheru D. Biedrzycki B. Donehower R.C. Zaheer A. Fisher G.A. Crocenzi T.S. Lee J.J. Duffy S.M. Goldberg R.M. de la Chapelle A. Koshiji M. Bhaijee F. Huebner T. Hruban R.H. Wood L.D. Cuka N. Pardoll D.M. Papadopoulos N. Kinzler K.W. Zhou S. Cornish T.C. Taube J.M. Anders R.A. Eshleman J.R. Vogelstein B. Diaz L.A. PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015 372 26 2509 2520 10.1056/NEJMoa1500596 26028255
    [Google Scholar]
  12. Zhou Y. Mouw K.W. DNA repair deficiency and the immune microenvironment: A pathways perspective. DNA Repair 2024 133 103594 10.1016/j.dnarep.2023.103594 37980867
    [Google Scholar]
  13. Llosa N.J. Cruise M. Tam A. Wicks E.C. Hechenbleikner E.M. Taube J.M. Blosser R.L. Fan H. Wang H. Luber B.S. Zhang M. Papadopoulos N. Kinzler K.W. Vogelstein B. Sears C.L. Anders R.A. Pardoll D.M. Housseau F. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015 5 1 43 51 10.1158/2159‑8290.CD‑14‑0863 25358689
    [Google Scholar]
  14. Bouferraa Y. Chedid A. Amhaz G. El Lakkiss A. Mukherji D. Temraz S. Shamseddine A. The Role of Gut Microbiota in Overcoming Resistance to Checkpoint Inhibitors in Cancer Patients: Mechanisms and Challenges. Int. J. Mol. Sci. 2021 22 15 8036 10.3390/ijms22158036 34360802
    [Google Scholar]
  15. Liu J. Zhang Y. Intratumor microbiome in cancer progression: Current developments, challenges and future trends. Biomark. Res. 2022 10 1 37 10.1186/s40364‑022‑00381‑5 35642013
    [Google Scholar]
  16. Xie Y. Xie F. Zhou X. Zhang L. Yang B. Huang J. Wang F. Yan H. Zeng L. Zhang L. Zhou F. Microbiota in Tumors: From Understanding to Application. Adv. Sci. 2022 9 21 2200470 10.1002/advs.202200470 35603968
    [Google Scholar]
  17. Iyadorai T. Mariappan V. Vellasamy K.M. Wanyiri J.W. Roslani A.C. Lee G.K. Sears C. Vadivelu J. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS One 2020 15 1 e0228217 10.1371/journal.pone.0228217 31990962
    [Google Scholar]
  18. Choi, HJ Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: An in vitro implication of infection-linked tumor dissemination. Oncogene 2013 32 41 4960 4969 10.1038/onc.2012.508 23503457
    [Google Scholar]
  19. Chattopadhyay I. Dhar R. Pethusamy K. Seethy A. Srivastava T. Sah R. Sharma J. Karmakar S. Exploring the role of gut microbiome in colon cancer. Appl. Biochem. Biotechnol. 2021 193 6 1780 1799 10.1007/s12010‑021‑03498‑9 33492552
    [Google Scholar]
  20. Dalal N. Jalandra R. Bayal N. Yadav A.K. Harshulika; Sharma, M.; Makharia, G.K.; Kumar, P.; Singh, R.; Solanki, P.R.; Kumar, A. Gut microbiota-derived metabolites in CRC progression and causation. J. Cancer Res. Clin. Oncol. 2021 147 11 3141 3155 10.1007/s00432‑021‑03729‑w 34273006
    [Google Scholar]
  21. Fan S. Zhou L. Zhang W. Wang D. Tang D. Role of imbalanced gut microbiota in promoting CRC metastasis: From theory to clinical application. Cell Commun. Signal. 2024 22 1 232 10.1186/s12964‑024‑01615‑9 38637851
    [Google Scholar]
  22. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosentino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gelfand E. Donovan M. Meng Y. Grant G. Mash D. Marcus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im, H.K.; Konkashbaev, A.; Pritchard, J.; Stevens, M.; Flutre, T.; Wen, X.; Dermitzakis, E.T.; Lappalainen, T.; Guigo, R.; Monlong, J.; Sammeth, M.; Koller, D.; Battle, A.; Mostafavi, S.; McCarthy, M.; Rivas, M.; Maller, J.; Rusyn, I.; Nobel, A.; Wright, F.; Shabalin, A.; Feolo, M.; Sharopova, N.; Sturcke, A.; Paschal, J.; Anderson, J.M.; Wilder, E.L.; Derr, L.K.; Green, E.D.; Struewing, J.P.; Temple, G.; Volpi, S.; Boyer, J.T.; Thomson, E.J.; Guyer, M.S.; Ng, C.; Abdallah, A.; Colantuoni, D.; Insel, T.R.; Koester, S.E.; Little, A.R.; Bender, P.K.; Lehner, T.; Yao, Y.; Compton, C.C.; Vaught, J.B.; Sawyer, S.; Lockhart, N.C.; Demchok, J.; Moore, H.F. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  23. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  24. Steen C.B. Liu C.L. Alizadeh A.A. Newman A.M. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. In: Stem Cell. Transcriptional Networks. Kidder B.L. New York, NY Springer US 2020 135 157 10.1007/978‑1‑0716‑0301‑7_7
    [Google Scholar]
  25. Becht E. Giraldo N.A. Lacroix L. Buttard B. Elarouci N. Petitprez F. Selves J. Laurent-Puig P. Sautès-Fridman C. Fridman W.H. de Reyniès A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016 17 1 218 10.1186/s13059‑016‑1070‑5 27765066
    [Google Scholar]
  26. Zheng M. Long J. Chelariu-Raicu A. Mullikin H. Vilsmaier T. Vattai A. Heidegger H.H. Batz F. Keckstein S. Jeschke U. Trillsch F. Mahner S. Kaltofen T. Identification of a Novel Tumor Microenvironment Prognostic Signature for Advanced-Stage Serous Ovarian Cancer. Cancers 2021 13 13 3343 10.3390/cancers13133343 34283076
    [Google Scholar]
  27. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  28. Robinson M.D. McCarthy D.J. Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010 26 1 139 140 10.1093/bioinformatics/btp616 19910308
    [Google Scholar]
  29. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  30. Lee D.D. Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999 401 6755 788 791 10.1038/44565 10548103
    [Google Scholar]
  31. Brunet J.P. Tamayo P. Golub T.R. Mesirov J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 2004 101 12 4164 4169 10.1073/pnas.0308531101 15016911
    [Google Scholar]
  32. Frigyesi A. Höglund M. Non-negative matrix factorization for the analysis of complex gene expression data: Identification of clinically relevant tumor subtypes. Cancer Inform. 2008 6 275 292 10.4137/cin.s606 19259414
    [Google Scholar]
  33. Hutchins L.N. Murphy S.M. Singh P. Graber J.H. Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 2008 24 23 2684 2690 10.1093/bioinformatics/btn526 18852176
    [Google Scholar]
  34. Leek J.T. Johnson W.E. Parker H.S. Jaffe A.E. Storey J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012 28 6 882 883 10.1093/bioinformatics/bts034 22257669
    [Google Scholar]
  35. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  36. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  37. Lapuente-Santana Ó. van Genderen M. Hilbers P.A.J. Finotello F. Eduati F. Interpretable systems biomarkers predict response to immune-checkpoint inhibitors. Patterns 2021 2 8 100293 10.1016/j.patter.2021.100293 34430923
    [Google Scholar]
  38. Warde-Farley D. Donaldson S.L. Comes O. Zuberi K. Badrawi R. Chao P. Franz M. Grouios C. Kazi F. Lopes C.T. Maitland A. Mostafavi S. Montojo J. Shao Q. Wright G. Bader G.D. Morris Q. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function Nu-cleic Acids Res 2010 38 Web Server issue W214 W220 10.1093/nar/gkq537 20576703
    [Google Scholar]
  39. Hao Y. Stuart T. Kowalski M.H. Choudhary S. Hoffman P. Hartman A. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2023 37231261
    [Google Scholar]
  40. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  41. Efremova M. Vento-Tormo M. Teichmann S.A. Vento-Tormo R. CellPhoneDB: Inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 2020 15 4 1484 1506 10.1038/s41596‑020‑0292‑x 32103204
    [Google Scholar]
  42. Uhlén M. Fagerberg L. Hallström B.M. Lindskog C. Oksvold P. Mardinoglu A. Sivertsson Å. Kampf C. Sjöstedt E. Asplund A. Olsson I. Edlund K. Lundberg E. Navani S. Szigyarto C.A.K. Odeberg J. Djureinovic D. Takanen J.O. Hober S. Alm T. Edqvist P.H. Berling H. Tegel H. Mulder J. Rockberg J. Nilsson P. Schwenk J.M. Hamsten M. von Feilitzen K. Forsberg M. Persson L. Johansson F. Zwahlen M. von Heijne G. Nielsen J. Pontén F. Tissue-based map of the human proteome. Science 2015 347 6220 1260419 10.1126/science.1260419 25613900
    [Google Scholar]
  43. Wang Q. Yu M. Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front. Immunol. 2025 15 1440830 10.3389/fimmu.2024.1440830 39877377
    [Google Scholar]
  44. Gong B.S. Wang R. Xu H.X. Miao M.Y. Yao Z.Z. Nanotherapy targeting the tumor microenvironment. Curr. Cancer Drug Targets 2019 19 7 525 533 10.2174/1568009619666181220103714 30569855
    [Google Scholar]
  45. Shi Z. Chiang C.I. Labhart P. Zhao Y. Yang J. Mistretta T.A. Henning S.J. Maity S.N. Mori-Akiyama Y. Context-specific role of SOX9 in NF-Y mediated gene regulation in colorectal cancer cells. Nucleic Acids Res. 2015 43 13 6257 6269 10.1093/nar/gkv568 26040697
    [Google Scholar]
  46. Lizárraga-Verdugo E. Carmona T. Ramos-Payan R. Avendaño-Félix M. Bermúdez M. Parra-Niebla M. López-Camarillo C. Fernandez-Figueroa E. Lino-Silva L. Saavedra H. Vela-Sarmiento I. Ovando R. Ruíz-García E. Aguilar-Medina M. SOX9 is associated with advanced T-stages of clinical stage II colon cancer in young Mexican patients. Oncol. Lett. 2021 22 1 497 10.3892/ol.2021.12758 33981359
    [Google Scholar]
  47. Xue V.W. Ng S.S.M. Tsang H.F. Wong H.T. Leung W.W. Wong Y.N. Wong Y.K.E. Yu A.C.S. Yim A.K.Y. Cho W.C.S. Tai W.C.S. Wong S.C.C. The non-invasive diagnosis of colorectal cancer via a SOX9-based gene panel. Clin. Exp. Med. 2023 23 6 2421 2432 10.1007/s10238‑022‑00970‑6 36637582
    [Google Scholar]
  48. Aldaz P. Otaegi-Ugartemendia M. Saenz-Antoñanzas A. Garcia-Puga M. Moreno-Valladares M. Flores J.M. Gerovska D. Arauzo-Bravo M.J. Samprón N. Matheu A. Carrasco-Garcia E. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci. Rep. 2020 10 1 357 10.1038/s41598‑019‑57047‑w 31941916
    [Google Scholar]
  49. Li T. Huang H. Shi G. Zhao L. Li T. Zhang Z. Liu R. Hu Y. Liu H. Yu J. Li G. TGF-β1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition. Cell Death Dis. 2018 9 9 849 10.1038/s41419‑018‑0877‑2 30154451
    [Google Scholar]
  50. Huang J.Q. Wei F.K. Xu X.L. Ye S.X. Song J.W. Ding P.K. Zhu J. Li H.F. Luo X.P. Gong H. Su L. Yang L. Gong L.Y. SOX9 drives the epithelial–mesenchymal transition in non-small-cell lung cancer through the Wnt/β-catenin pathway. J. Transl. Med. 2019 17 1 143 10.1186/s12967‑019‑1895‑2 31060551
    [Google Scholar]
  51. Jiang X. Yang L. Gao Q. Liu Y. Feng X. Ye S. Yang Z. The role of rab gtpases and its potential in predicting immunotherapy response and prognosis in colorectal cancer. Front. Genet. 2022 13 828373 10.3389/fgene.2022.828373 35154286
    [Google Scholar]
  52. Tan Z. Chen X. Zuo J. Fu S. Wang H. Wang J. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J. Transl. Med. 2023 21 1 223 10.1186/s12967‑023‑04056‑z 36973787
    [Google Scholar]
  53. Yoon H.S. Kim H.Y. Cho K.A. Kim Y.H. Woo S.Y. Kim H.S. Kang J.L. Ryu K.H. Park J.W. Procollagen c-endopeptidase enhancer 2 secreted by tonsil-derived mesenchymal stem cells increases the oxidative burst of promyelocytic HL-60 Cells. Biology 2022 11 2 255 10.3390/biology11020255 35205121
    [Google Scholar]
  54. Lai T.Y. Chen I.J. Lin R.J. Liao G.S. Yeo H.L. Ho C.L. Wu J.C. Chang N.C. Lee A.C.L. Yu A.L. Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells. Cell Death Discov. 2019 5 1 74 10.1038/s41420‑019‑0145‑y 30854233
    [Google Scholar]
  55. Kurze A.K. Buhs S. Eggert D. Oliveira-Ferrer L. Müller V. Niendorf A. Wagener C. Nollau P. Immature O-glycans recognized by the macrophage glycoreceptor CLEC10A (MGL) are induced by 4-hydroxy-tamoxifen, oxidative stress and DNA-damage in breast cancer cells. Cell Commun. Signal. 2019 17 1 107 10.1186/s12964‑019‑0420‑9 31455323
    [Google Scholar]
  56. Ribatti D. Tamma R. Crivellato E. The dual role of mast cells in tumor fate. Cancer Lett. 2018 433 252 258 10.1016/j.canlet.2018.07.005 29981810
    [Google Scholar]
  57. Xia A. Zhang Y. Xu J. Yin T. Lu X.J. T cell dysfunction in cancer immunity and immunotherapy. Front. Immunol. 2019 10 1719 10.3389/fimmu.2019.01719 31379886
    [Google Scholar]
  58. Lin Y. Xu J. Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019 12 1 76 10.1186/s13045‑019‑0760‑3 31300030
    [Google Scholar]
  59. Yan M. Zheng M. Niu R. Yang X. Tian S. Fan L. Li Y. Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front. Cell Dev. Biol. 2022 10 938289 10.3389/fcell.2022.938289 36060811
    [Google Scholar]
  60. Masucci M.T. Minopoli M. Carriero M.V. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front. Oncol. 2019 9 1146 10.3389/fonc.2019.01146 31799175
    [Google Scholar]
  61. Yoshida G.J. Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J. Exp. Clin. Cancer Res. 2020 39 1 112 10.1186/s13046‑020‑01611‑0 32546182
    [Google Scholar]
  62. Monteran L. Erez N. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 2019 10 1835 10.3389/fimmu.2019.01835 31428105
    [Google Scholar]
  63. Tandon I. Sharma N.K. Macrophage flipping from foe to friend: A matter of interest in breast carcinoma heterogeneity driving drug resistance. Curr. Cancer Drug Targets 2019 19 3 189 198 10.2174/1568009618666180628102247 29952260
    [Google Scholar]
  64. Jorgovanovic D. Song M. Wang L. Zhang Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020 8 1 49 10.1186/s40364‑020‑00228‑x 33005420
    [Google Scholar]
  65. Dhatchinamoorthy K. Colbert J.D. Rock K.L. Cancer immune evasion through loss of mhc class i antigen presentation. Front. Immunol. 2021 12 636568 10.3389/fimmu.2021.636568 33767702
    [Google Scholar]
  66. Li S. Wu J. Zhu S. Liu Y.J. Chen J. Disease-associated plasmacytoid dendritic cells. Front. Immunol. 2017 8 1268 10.3389/fimmu.2017.01268 29085361
    [Google Scholar]
  67. Klampfer L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011 11 4 451 464 10.2174/156800911795538066 21247378
    [Google Scholar]
  68. Liu Z. Zhang X. Ben T. Li M. Jin Y. Wang T. Song Y. Focal adhesion in the tumour metastasis: From molecular mechanisms to therapeutic targets. Biomark. Res. 2025 13 1 38 10.1186/s40364‑025‑00745‑7 40045379
    [Google Scholar]
  69. Yuan Z. Li Y. Zhang S. Wang X. Dou H. Yu X. Zhang Z. Yang S. Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 2023 22 1 48 10.1186/s12943‑023‑01744‑8 36906534
    [Google Scholar]
  70. Jiang S. Mitochondrial oxidative phosphorylation is linked to T-cell exhaustion. Aging 2020 12 17 16665 16666 10.18632/aging.103995 32897246
    [Google Scholar]
  71. Moretto R. Germani M.M. Carullo M. Conca V. Minelli A. Giordano M. Bruno R. Rossini D. Gusmaroli E. De Grandis M.C. Antoniotti C. Salvatore L. Passardi A. Tamberi S. Scartozzi M. Pietrantonio F. Lonardi S. Ugolini C. Masi G. Cremolini C. Exploring the prognostic and predictive impact of genomic loss of heterozygosity and homologous recombination deficiency alterations in patients with metastatic colorectal Cancer. JCO Precis. Oncol. 2025 9 9 e2400567 10.1200/PO‑24‑00567 40249885
    [Google Scholar]
  72. Jafari A. Babajani A. Sarrami Forooshani R. Yazdani M. Rezaei-Tavirani M. Clinical applications and anticancer effects of antimicrobial peptides: From bench to bedside. Front. Oncol. 2022 12 819563 10.3389/fonc.2022.819563 35280755
    [Google Scholar]
  73. Lin H. Xia L. Lian J. Chen Y. Zhang Y. Zhuang Z. Cai H. You J. Guan G. Delineation of colorectal cancer ligand-receptor interactions and their roles in the tumor microenvironment and prognosis. J. Transl. Med. 2021 19 1 497 10.1186/s12967‑021‑03162‑0 34876143
    [Google Scholar]
  74. Zhang Y. Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020 13 1 165 10.1186/s13045‑020‑00990‑3 33276800
    [Google Scholar]
  75. Kim R. An M. Lee H. Mehta A. Heo Y.J. Kim K.M. Lee S.Y. Moon J. Kim S.T. Min B.H. Kim T.J. Rha S.Y. Kang W.K. Park W.Y. Klempner S.J. Lee J. Early tumor–immune microenvironmental remodeling and response to first-line fluoropyrimidine and platinum chemotherapy in advanced gastric cancer. Cancer Discov. 2022 12 4 984 1001 10.1158/2159‑8290.CD‑21‑0888 34933901
    [Google Scholar]
  76. Zhu H. Shan Y. Ge K. Lu J. Kong W. Jia C. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy. Cell. Oncol. 2020 43 6 1203 1214 10.1007/s13402‑020‑00552‑2 32797385
    [Google Scholar]
  77. Principe D.R. Kamath S.D. Korc M. Munshi H.G. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol. Ther. 2022 236 108111 10.1016/j.pharmthera.2022.108111 35016920
    [Google Scholar]
  78. Sartore-Bianchi A. Trusolino L. Martino C. Bencardino K. Lonardi S. Bergamo F. Zagonel V. Leone F. Depetris I. Martinelli E. Troiani T. Ciardiello F. Racca P. Bertotti A. Siravegna G. Torri V. Amatu A. Ghezzi S. Marrapese G. Palmeri L. Valtorta E. Cassingena A. Lauricella C. Vanzulli A. Regge D. Veronese S. Comoglio P.M. Bardelli A. Marsoni S. Siena S. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016 17 6 738 746 10.1016/S1470‑2045(16)00150‑9 27108243
    [Google Scholar]
  79. Wang X. Fang Y. Liang W. Wong C.C. Qin H. Gao Y. Liang M. Song L. Zhang Y. Fan M. Liu C. Lau H.C.H. Xu L. Li X. Song W. Wang J. Wang N. Yang T. Mo M. Zhang X. Fang J. Liao B. Sung J.J.Y. Yu J. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell 2024 42 10 1729 1746.e8 10.1016/j.ccell.2024.08.019 39303724
    [Google Scholar]
  80. Jiang S.S. Xie Y.L. Xiao X.Y. Kang Z.R. Lin X.L. Zhang L. Li C.S. Qian Y. Xu P.P. Leng X.X. Wang L.W. Tu S.P. Zhong M. Zhao G. Chen J.X. Wang Z. Liu Q. Hong J. Chen H.Y. Chen Y.X. Fang J.Y. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 2023 31 5 781 797.e9 10.1016/j.chom.2023.04.010 37130518
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096395386250910130110
Loading
/content/journals/ccdt/10.2174/0115680096395386250910130110
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test