Skip to content
2000
image of GOLM1-induced Vascular Permeability and Angiogenesis in Hepatocellular Carcinoma through Modulation of Cancer Cell-derived ExosomalmicroRNAs

Abstract

Introduction

Enhanced angiogenesis and impaired vascular integrity facilitate cancer metastasis. There is accumulating evidence that cancer-derived exosomes take a functional role in these processes. In our previous study, we revealed that Golgi Membrane protein 1 (GOLM1) can promote metastasis of Hepatocellular Carcinoma (HCC), and miRNAs can modulate angiogenesis and vascular permeability in HCC. The objective is to reveal that GOLM1 can promote HCC progression in an exosomal miRNA-dependent way.

Methods

Comprehensive bioinformatics analysis and experiments were conducted to associate GOLM1 expression with angiogenesis in HCC. The effect of hepatoma cell-derived exosomes on Human Umbilical Vein Endothelial Cells (HUVEC) was tested. Exosomal miRNA expression was profiled and validated in GOLM1-knockdown HCC cells. Targets of miR-4449 and miR-3651 were predicted with online tools and validated in vitro. Correlation between miR-4449/miR-3651 and microvascular invasion or recurrence in HCC was assessed.

Results

GOLM1 correlated with angiogenesis in HCC. HCC cell-derived exosomes can be transferred to endothelial cells, and GOLM1 can regulate exosome-induced angiogenesis and vascular permeability. In vitro experiments showed that GOLM1 knockdown reduced exosomal abundance of miR-4449 and miR-3651, which target KEAP1 and ZO-1, respectively. Elevated miR-4449 and miR-3651 expression were correlated with microvascular invasion and recurrence in HCC patients.

Discussion

We demonstrated that GOLM1 can promote HCC progression independent of its role in modulating EGFR/RTK cell-surface recycling, indicating that patients with high GOLM1 expression may benefit more from anti-angiogenic drugs and highlighting the potential of targeting miR-4449 and miR-3651 to prevent angiogenesis and vascular leakiness in HCC. However, in vivo studies are further needed to validate the effect of miR-4449 and miR-3651 inhibitors in compromising angiogenesis and vascular permeability. Besides, a larger validation cohort is indispensable for establishing the correlation between miR-4449/miR-3651 expression and microvascular invasion and tumor recurrence in HCC.

Conclusion

Our findings suggest that, under the control of GOLM1, HCC cell-derived exosomal miR-4449 and miR-3651 increase angiogenesis and vascular permeability by targeting KEAP1 and ZO-1, highlighting the potential of exosomal miRNAs as promising therapeutic targets for HCC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096391348250916080657
2025-10-08
2025-12-13
Loading full text...

Full text loading...

References

  1. Ye Q.H. Zhu W.W. Zhang J.B. Qin Y. Lu M. Lin G.L. Guo L. Zhang B. Lin Z.H. Roessler S. Forgues M. Jia H.L. Lu L. Zhang X.F. Lian B.F. Xie L. Dong Q.Z. Tang Z.Y. Wang X.W. Qin L.X. GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell 2016 30 3 444 458 10.1016/j.ccell.2016.07.017 27569582
    [Google Scholar]
  2. Bergers G. Fendt S.M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 2021 21 3 162 180 10.1038/s41568‑020‑00320‑2 33462499
    [Google Scholar]
  3. Pérez-González A. Bévant K. Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat. Cancer 2023 4 8 1063 1082 10.1038/s43018‑023‑00595‑y 37537300
    [Google Scholar]
  4. Llovet J.M. Kelley R.K. Villanueva A. Singal A.G. Pikarsky E. Roayaie S. Lencioni R. Koike K. Zucman-Rossi J. Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021 7 1 6 10.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  5. Zhang Q. Ho D.W.H. Tsui Y.M. Ng I.O.L. Single-cell transcriptomics of liver cancer: Hype or insights? Cell. Mol. Gastroenterol. Hepatol. 2022 14 3 513 525 10.1016/j.jcmgh.2022.04.014 35577269
    [Google Scholar]
  6. Chen J. Lin Z. Liu L. Zhang R. Geng Y. Fan M. Zhu W. Lu M. Lu L. Jia H. Zhang J. Qin L.X. GOLM1 exacerbates CD8+ T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct. Target. Ther. 2021 6 1 397 10.1038/s41392‑021‑00784‑0 34795203
    [Google Scholar]
  7. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  8. Liu Y. Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016 30 5 668 681 10.1016/j.ccell.2016.09.011 27846389
    [Google Scholar]
  9. Zeng Z. Li Y. Pan Y. Lan X. Song F. Sun J. Zhou K. Liu X. Ren X. Wang F. Hu J. Zhu X. Yang W. Liao W. Li G. Ding Y. Liang L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 2018 9 1 5395 10.1038/s41467‑018‑07810‑w 30568162
    [Google Scholar]
  10. Hoshino A. Costa-Silva B. Shen T.L. Rodrigues G. Hashimoto A. Tesic Mark M. Molina H. Kohsaka S. Di Giannatale A. Ceder S. Singh S. Williams C. Soplop N. Uryu K. Pharmer L. King T. Bojmar L. Davies A.E. Ararso Y. Zhang T. Zhang H. Hernandez J. Weiss J.M. Dumont-Cole V.D. Kramer K. Wexler L.H. Narendran A. Schwartz G.K. Healey J.H. Sandstrom P. Jørgen Labori K. Kure E.H. Grandgenett P.M. Hollingsworth M.A. de Sousa M. Kaur S. Jain M. Mallya K. Batra S.K. Jarnagin W.R. Brady M.S. Fodstad O. Muller V. Pantel K. Minn A.J. Bissell M.J. Garcia B.A. Kang Y. Rajasekhar V.K. Ghajar C.M. Matei I. Peinado H. Bromberg J. Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015 527 7578 329 335 10.1038/nature15756 26524530
    [Google Scholar]
  11. Kugeratski F.G. Santi A. Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci. Signal. 2022 15 753 eaaz4742 10.1126/scisignal.aaz4742 36166511
    [Google Scholar]
  12. Xu R. Rai A. Chen M. Suwakulsiri W. Greening D.W. Simpson R.J. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 2018 15 10 617 638 10.1038/s41571‑018‑0036‑9 29795272
    [Google Scholar]
  13. Zhou W. Fong M.Y. Min Y. Somlo G. Liu L. Palomares M.R. Yu Y. Chow A. O’Connor S.T.F. Chin A.R. Yen Y. Wang Y. Marcusson E.G. Chu P. Wu J. Wu X. Li A.X. Li Z. Gao H. Ren X. Boldin M.P. Lin P.C. Wang S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014 25 4 501 515 10.1016/j.ccr.2014.03.007 24735924
    [Google Scholar]
  14. Wortzel I. Dror S. Kenific C.M. Lyden D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell 2019 49 3 347 360 10.1016/j.devcel.2019.04.011 31063754
    [Google Scholar]
  15. Mo Y. Leung L.L. Mak C.S.L. Wang X. Chan W.S. Hui L.M.N. Tang H.W.M. Siu M.K.Y. Sharma R. Xu D. Tsui S.K.W. Ngan H.Y.S. Yung M.M.H. Chan K.K.L. Chan D.W. Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol. Cancer 2023 22 1 4 10.1186/s12943‑022‑01703‑9 36624516
    [Google Scholar]
  16. Guo S. Chen J. Chen F. Zeng Q. Liu W.L. Zhang G. Exosomes derived from fusobacterium nucleatum -infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut 2021 70 8 1507 1519 10.1136/gutjnl‑2020‑321187 33172926
    [Google Scholar]
  17. Huo M. Yu K. Zheng Y. Liu L. Zhao H. Li X. Huang C. Zhang J. Integrated bioinformatics analysis revealed the regulation of angiogenesis by tumor cells in hepatocellular carcinoma. Biosci. Rep. 2021 41 7 BSR20210126 10.1042/BSR20210126 34151937
    [Google Scholar]
  18. Zheng Y. Huang C. Lu L. Yu K. Zhao J. Chen M. Liu L. Sun Q. Lin Z. Zheng J. Chen J. Zhang J. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J. Hematol. Oncol. 2021 14 1 16 10.1186/s13045‑020‑01029‑3 33446239
    [Google Scholar]
  19. Yu K. Li N. Cheng Q. Zheng J. Zhu M. Bao S. Chen M. Shi G. miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. J. Mol. Med. (Berl.) 2018 96 1 65 74 10.1007/s00109‑017‑1593‑6 29051972
    [Google Scholar]
  20. Liu L. Yu K. Huang C. Huo M. Li X. Yin R. Liu C. Lu L. Sun H. Zhang J. Sex differences in hepatocellular carcinoma indicated BEX4 as a potential target to improve efficacy of lenvatinib plus immune checkpoint inhibitors. J. Cancer 2022 13 11 3221 3233 10.7150/jca.73051 36118521
    [Google Scholar]
  21. Chen L. Zhang C. Xue R. Liu M. Bai J. Bao J. Wang Y. Jiang N. Li Z. Wang W. Wang R. Zheng B. Yang A. Hu J. Liu K. Shen S. Zhang Y. Bai M. Wang Y. Zhu Y. Yang S. Gao Q. Gu J. Gao D. Wang X.W. Nakagawa H. Zhang N. Wu L. Rozen S.G. Bai F. Wang H. Deep whole-genome analysis of 494 hepatocellular carcinomas. Nature 2024 627 8004 586 593 10.1038/s41586‑024‑07054‑3 38355797
    [Google Scholar]
  22. Ito A. Shimazu T. Maeda S. Shah A.A. Tsunoda T. Iemura S. Natsume T. Suzuki T. Motohashi H. Yamamoto M. Yoshida M. The subcellular localization and activity of cortactin is regulated by acetylation and interaction with Keap1. Sci. Signal. 2015 8 404 ra120 10.1126/scisignal.aad0667 26602019
    [Google Scholar]
  23. Kuo W.T. Zuo L. Odenwald M.A. Madha S. Singh G. Gurniak C.B. Abraham C. Turner J.R. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology 2021 161 6 1924 1939 10.1053/j.gastro.2021.08.047 34478742
    [Google Scholar]
  24. Mathieu M. Martin-Jaular L. Lavieu G. Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019 21 1 9 17 10.1038/s41556‑018‑0250‑9 30602770
    [Google Scholar]
  25. Mori M.A. Ludwig R.G. Garcia-Martin R. Brandão B.B. Kahn C.R. Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab. 2019 30 4 656 673 10.1016/j.cmet.2019.07.011 31447320
    [Google Scholar]
  26. Hu Y. Liu L. Chen Y. Zhang X. Zhou H. Hu S. Li X. Li M. Li J. Cheng S. Liu Y. Xu Y. Yan W. Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia. Nat. Commun. 2023 14 1 5179 10.1038/s41467‑023‑40571‑9 37620316
    [Google Scholar]
  27. Shu L. Li X. Liu Z. Li K. Shi A. Tang Y. Zhao L. Huang L. Zhang Z. Zhang D. Huang S. Lian S. Sheng G. Yan Z. Zhang Z. Xu Y. Bile exosomal miR-182/183-5p increases cholangiocarcinoma stemness and progression by targeting HPGD and increasing PGE2 generation. Hepatology 2024 79 2 307 322 10.1097/HEP.0000000000000437 37140231
    [Google Scholar]
  28. Wei C. Sun Y. Zeng F. Chen X. Ma L. Liu X. Qi X. Shi W. Gao H. Exosomal miR‐181d‐5p derived from rapamycin‐conditioned MDSC alleviated allograft rejection by targeting KLF6. Adv. Sci. 2023 10 34 2304922 10.1002/advs.202304922 37870185
    [Google Scholar]
  29. Fang J.H. Zhang Z.J. Shang L.R. Luo Y.W. Lin Y.F. Yuan Y. Zhuang S.M. Hepatoma cell‐secreted exosomal microRNA‐103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology 2018 68 4 1459 1475 10.1002/hep.29920 29637568
    [Google Scholar]
  30. Qiu S. Xie L. Lu C. Gu C. Xia Y. Lv J. Xuan Z. Fang L. Yang J. Zhang L. Li Z. Wang W. Xu H. Li B. Xu Z. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J. Exp. Clin. Cancer Res. 2022 41 1 296 10.1186/s13046‑022‑02499‑8 36217165
    [Google Scholar]
  31. He Q. Ye A. Ye W. Liao X. Qin G. Xu Y. Yin Y. Luo H. Yi M. Xian L. Zhang S. Qin X. Zhu W. Li Y. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 2021 12 6 576 10.1038/s41419‑021‑03803‑8 34088891
    [Google Scholar]
  32. Zhao X. Song Q. Miao G. Zhu X. MicroRNA-3651 promotes the growth and invasion of hepatocellular carcinoma cells by targeting PTEN. OncoTargets Ther. 2019 12 7045 7054 10.2147/OTT.S213705 31695418
    [Google Scholar]
  33. Li C. Ding D. Gao Y. Li Y. MicroRNA 3651 promotes colorectal cancer cell proliferation through directly repressing T box transcription factor 1. Int. J. Mol. Med. 2020 45 3 956 966 10.3892/ijmm.2020.4458 31922246
    [Google Scholar]
  34. Liu Y. Hu L. Liu Q. Ye J. Zhang J. miR-3651 participates in the growth cycle of hepatocellular carcinoma cells and promotes the malignant metastasis via the PI3K/AKT/mTOR signalling pathway. J. Oncol. 2022 2022 1 5744999 10.1155/2022/5744999
    [Google Scholar]
  35. Yan Z. Hong S. Song Y. Bi M. microR-4449 Promotes Colorectal Cancer Cell Proliferation via Regulation of SOCS3 and Activation of STAT3 Signaling. Cancer Manag. Res. 2021 13 3029 3039 10.2147/CMAR.S266153 33854373
    [Google Scholar]
  36. Gao C. Wang B. Chen Q. Wang M. Fei X. Zhao N. Serum exosomes from diabetic kidney disease patients promote pyroptosis and oxidative stress through the miR-4449/HIC1 pathway. Nutr. Diabetes 2021 11 1 33 10.1038/s41387‑021‑00175‑y 34732690
    [Google Scholar]
  37. Wang M. Sun Y. Yuan D. Yue S. Yang Z. Follicular fluid derived exosomal miR-4449 regulates cell proliferation and oxidative stress by targeting KEAP1 in human granulosa cell lines KGN and COV434. Exp. Cell Res. 2023 430 2 113735 10.1016/j.yexcr.2023.113735 37517590
    [Google Scholar]
  38. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  39. Occhiuto C.J. Liby K.T. KEAP1-mutant lung cancers weaken anti-tumor immunity and promote an M2-like macrophage phenotype. Int. J. Mol. Sci. 2024 25 6 3510 10.3390/ijms25063510 38542481
    [Google Scholar]
  40. Shen J. Chen M. Lee D. Law C.T. Wei L. Tsang F.H.C. Chin D.W.C. Cheng C.L.H. Lee J.M.F. Ng I.O.L. Wong C.C.L. Wong C.M. Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression. Gut 2020 69 2 329 342 10.1136/gutjnl‑2019‑318668 31439637
    [Google Scholar]
  41. Wang X. Zhou T. Yang X. Cao X. Jin G. Zhang P. Guo J. Rong K. Li B. Hu Y. Liu K. Ma P. Qin A. Zhao J. DDRGK1 enhances osteosarcoma chemoresistance via inhibiting KEAP1‐Mediated NRF2 ubiquitination. Adv. Sci. 2023 10 14 2204438 10.1002/advs.202204438 36965071
    [Google Scholar]
  42. Shao N. Huang H. Idris M. Peng X. Xu F. Dong S. Liu C. KEAP1 mutations drive tumorigenesis by Suppressing SOX9 ubiquitination and degradation. Adv. Sci. 2020 7 21 2001018 10.1002/advs.202001018 33173725
    [Google Scholar]
  43. Lee D.F. Kuo H.P. Liu M. Chou C.K. Xia W. Du Y. Shen J. Chen C.T. Huo L. Hsu M.C. Li C.W. Ding Q. Liao T.L. Lai C.C. Lin A.C. Chang Y.H. Tsai S.F. Li L.Y. Hung M.C. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 2009 36 1 131 140 10.1016/j.molcel.2009.07.025 19818716
    [Google Scholar]
  44. Li J. Shi D. Li S. Shi X. Liu Y. Zhang Y. Wang G. Zhang C. Xia T. Piao H. Liu H.X. KEAP1 promotes anti-tumor immunity by inhibiting PD-L1 expression in NSCLC. Cell Death Dis. 2024 15 2 175 10.1038/s41419‑024‑06563‑3 38413563
    [Google Scholar]
  45. Lin Y. Zhang C. Xiang P. Shen J. Sun W. Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J. Extracell. Vesicles 2020 9 1 1722385 10.1080/20013078.2020.1722385 32128072
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096391348250916080657
Loading
/content/journals/ccdt/10.2174/0115680096391348250916080657
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: exosome ; microRNA ; angiogenesis ; GOLM1 ; Hepatocellular carcinoma ; vascular permeability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test